
 

Advanced Operating Systems
Summer Semester 2022/2023

Martin Děcký



 
File Systems
4



 3

Classification of File SystemsClassification of File Systems
● Traditional

– Examples: ext4, XFS, NTFS, UFS (latest variants), BFS, JFS2, etc.
– Universal set of features
– Distinction between directory entries and i-nodes
– On-disk layout affected by rotational media and traditional partitioning
– Typically use of somewhat sophisticated data structures
– Typically larger constant overhead

● Not usable for small media
– Reliability via journaling of changes

● Soft updates as an alternative



 4

Classification of File SystemsClassification of File Systems
● Simpler traditional

– Examples: FAT, exFAT, etc.
● Historical examples (with some advanced features): HPFS, HFS

– Somewhat limited set of features
● Typically missing permissions, ownership and other metadata, limited directory entry types, 

limited file names, limited file sizes, size of some data structures fixed, etc.
– Frequently no distinction between directory entries and i-nodes
– On-disk layout could be affected by slow / removable rotational media
– Typically not so sophisticated data structures
– Limited reliability



 5

Classification of File SystemsClassification of File Systems
● Optical

– Examples: ISO 9660, UDF
– Compact, continuous structures to minimize seeking

● Path tables, directories, files
– Additional sessions referencing previous sessions

● Keeping / adding / removing files
● Wear leveling and block remapping for rewritable media

– As opposed to hardware abstractions (e.g. Mount Rainier)

– Hybrid media



 6

Classification of File SystemsClassification of File Systems
● Log-structured

– Examples: JFFS2, NILFS2, YAFFS, UBIFS, F2FS
– Idea: Instead of keeping a journal for consistency, why not use the journal as 

the data storage?
– Suits well zoned media (flash, SMR)

● Block subdivision and GC more efficient than basic appending
– Stale data can be accessed as snapshots (versions)
– Inherently always consistent
– Initial scan optimizations (persistent indexes)



 7

Classification of File SystemsClassification of File Systems
● Copy-on-write

– Examples: ZFS, btrfs, HAMMER2, APFS, ReFS
– Idea: Flexible on-disk layout, but no overwrites
– Stale data can be accessed as snapshots (versions)
– Multiple mountable roots
– Other advanced features (not strictly specific to COW)

● Data checksums (separately stored, Merkle tree), data redundancy, deduplication, integration 
with logical volume management, hierarchical caching, wandering intent logs, replication

– Inherently always consistent
– Initial scan issues avoided, but GC still needed (also serves as defragmentation)



 8

Classification of File SystemsClassification of File Systems

● Read-only
– Examples: SquashFS, cramfs, EROFS, AXFS
– Efficient storage of seed images (boot images, container 

images, thin provisioning, etc.)
● Often coupled with union mounts for read/write support

– Low overhead, no fragmentation, compression
– Easy caching, execute-in-place (adaptive compression)



 9

Classification of File SystemsClassification of File Systems

● Shared-disk
– Examples: CXFS, GPFS, GFS2, OCFS, HAMMER2
– Support for underlying block modifications from independent 

sources
● Via iSCSI, ATA over Ethernet, Fibre Channel, InfiniBand, NVMe over 

fabric
– In between regular file systems and network file systems
– Distributed lock manager vs. metadata broker



 10

File System CuriositiesFile System Curiosities
● Linear Tape File System (LTFS)
● NOVA

– Targeting byte-addressable persistent memory (NVRAM)
– Log structured for metadata per i-node (concurrency)

● Log is append-only, but non-continuous (linked list)
● Replication and checksums

– Data blocks managed as copy-on-write
– Global journaling for reliability of non-atomic operations

● RaiserFS
– Tail packing (sub-allocation of blocks)



 11

File System CuriositiesFile System Curiosities
● AdvFS, NSS

– Fairly traditional file systems, but supporting multiple block devices
● NTFS

– Reparse points, file system filters
– Caching i-node size in directory entry (non-consistent among hard links)
– Hard links for 8.3 file names
– Per-directory case sensitivity

● Case insensitivity is not trivial [1][2]
– Transactional NTFS

● Integrated with Kernel Transaction Manager
● Transaction-Safe FAT

● HFS+
– Hard links to directories



 12

File System CuriositiesFile System Curiosities
● XFS

– Allocation groups (concurrency)
– Multiple devices, COW, snapshots, deduplication, striping

● Controlled by Stratis

● ext4
– Journal checksums

● btrfs
– Integrated support for union mounting (read-only seeding)

● StegFS
– Steganographic extension to ext2

● Undetectable, hidden layer of files on a regular file system



 13

Other File Systems RemarksOther File Systems Remarks
● Resource forks, extended attributes

– Multiple streams associated with a single file
● Forward and backward compatibility

– Feature sets, feature bitmaps
– Allowed and required features

● File system semantics are not trivial [3]
● Path lengths, valid path characters
● Path separator

– The history of slash / backslash in complicated [4][5]



 



 15

ReferencesReferences
[1] https://lwn.net/Articles/784041/

[2] https://www.youtube.com/watch?v=yVlEZKiMGJU

[3] https://danluu.com/deconstruct-files/

[4] https://www.os2museum.com/wp/why-does-windows-really-use-backslash-as-path-separator/

[5] https://learn.microsoft.com/en-us/archive/blogs/larryosterman/why-is-the-dos-path-character

https://lwn.net/Articles/784041/
https://www.youtube.com/watch?v=yVlEZKiMGJU
https://danluu.com/deconstruct-files/
https://www.os2museum.com/wp/why-does-windows-really-use-backslash-as-path-separator/
https://learn.microsoft.com/en-us/archive/blogs/larryosterman/why-is-the-dos-path-character


 

Thank you!
Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

