
Linux memory management
(with focus on page allocations)

Vlastimil Babka

Linux Kernel Developer, SUSE Labs

vbabka@suse.cz

Advanced Operating Systems 2022/2023

Documentation and other sources

• Documentation/mm
– Still ad-hoc, ongoing effort to systematize and fill the gaps

• Books (of the past and the future)
– Understanding The Linux Virtual Manager (Mel Gorman)

• Very good and systematic coverage but too old – from 2.4 era (with What’s new in 2.6 sections)

• Still very useful to understand core design principles

• https://www.kernel.org/doc/gorman/

– The Linux Memory Manager (Lorenzo Stoakes)
• “The target release date is mid-late 2024” and “the book will target Linux 6.0”

• “I have written 656 pages of a target of roughly 1,500 pages.”

• https://linuxmemory.org/

• LWN - https://lwn.net/
– Many very good articles (not limited to kernel), LSF/MM conference coverage…

• Various company-branded or personal blog posts
2 /
26

https://www.kernel.org/doc/gorman/
https://linuxmemory.org/
https://lwn.net/

Linux MM – APIs for kernel

• bootmem/memblock allocator – early initialization

• page allocator – page order (2N physically contiguous pages)

• slab allocator – sub page granularity, internal fragmentation management
– SLAB – based on Solaris design – optimized for CPU cache and memory efficiency

– SLUB – new design – aimed for better scalability at the expense of more memory,
also much better debugging capabilities; default for many years now

• vmalloc – virtually contiguous memory allocator – via page tables
• mempool allocator – a layer on top of page or slab allocator

– guarantee for a forward progress – mostly for IO paths

• Page cache management for filesystems
• Memory tracking for userspace – process management
• Page table management

– get_user_pages() – virtual→struct page translation

• On-demand memory paging
3 /
26

MM – APIs for userspace
• Syscalls to manage memory

– mmap, munmap, mprotect, brk, mlock – POSIX

– madvise – hints from userspace e.g. MADV_DONTNEED, MADV_FREE etc...

– userfaultfd – page fault handling from userspace

– SystemV shared memory – IPC, shmget, shmat, shmdt

– memfd_create – anonymous memory referenced by a file descriptor – for IPC

• Memory backed filesystems
– ramdisk – fixed sized memory backed block device

– ramfs – simple memory backed filesystem

– tmpfs – more advanced memory backed filesystem, support for swapout, ACL, extended attributes

• Memory cgroups controller – more fine grained partitioning of the system memory
– Mostly for user space consumption limiting, kernel allocations are opt-in

– Support for hard limit, soft/low limit, swap configuration, userspace OOM killer

• Access to huge pages (2MB, 1GB)
– hugetlbfs – filesystem backed by preallocated huge pages

– THP – transparent huge pages for anonymous private or tmpfs memory

• NUMA allocation policies

– mbind, set_mempolicy, get_mempolicy
4 /
26

Physical memory representation
• Managed in page size granularity – arch specific, mostly 4kB

• Each order-0 page is represented by struct page

– Higher-order pages typically “compound pages”, first struct page “head”, the rest “tail” with a link to head

• Heavily packed – 64B on 64bit systems (~1.5% with 4kB pages)
– Lots of unions to distinguish different usage, or distinct types reinterpreting whole struct page (e.g. struct slab)

– Special tricks to save space – set bottom bits in pointers etc…

– Page flags for page state, including page lock (bit lock)

• Statically allocated during boot/memory hotplug – memmap
– Typically “sparsemem vmemmap” – virtually contiguous, 0xffffea… on x86_64 (modulo KASLR)

– Pages belong to different NUMA nodes and zones within the nodes, node/zone ids are part of page flags word

• Reference counted to control lifetime and allow sharing and ad-hoc access
– get_page(), put_page(), get_page_unless_zero()

– memory is returned to the page allocator when refcount drops to 0

• pfn_valid(), pfn_to_page(), page_to_pfn() – physical page frame number to struct page
translation

• struct folio – a new type to better abstract both order-0 and compound head page (cannot be a tail
page), layout matches struct page, gradually introduced throughout mm

5 /
26

Page allocator
• alloc_pages(gfp_t gfp_mask, unsigned int order) to get a struct page (and the associated

physical memory)

– alloc_pages_node(int nid, ...) to indicate the preferred numa node

• order – size of the allocation will be 2order contiguous naturally aligned pages

• gfp_mask – bitmask for the allocation mode

– Restrict to/allow specific zones – __GFP_DMA, __GFP_DMA32, __GFP_HIGHMEM, __GFP_MOVABLE

– Define allocation context wrt possibility of doing memory reclaim if free memory not available anymore
• __GFP_KSWAPD_RECLAIM, __GFP_DIRECT_RECLAIM, __GFP_IO, __GFP_FS

– Define allocation context wrt how hard to try succeed vs availability to fallback
• Reserves access: __GFP_HIGH, __GFP_MEMALLOC, __GFP_NOMEMALLOC

• Urgency: __GFP_NORETRY, __GFP_RETRY_MAYFAIL, __GFP_NOFAIL

– Page mobility hints to help anti-fragmentation mechanisms
• __GFP_MOVABLE, __GFP_RECLAIMABLE

– Standard combinations defined for most typical contexts:
• GFP_KERNEL: __GFP_RECLAIM | __GFP_IO | __GFP_FS – unmovable allocation, can reclaim both by kswapd and directly

• GFP_HIGHUSER_MOVABLE: GFP_KERNEL | __GFP_HIGHMEM | __GFP_MOVABLE – can reclaim, can use highmem and movable
zones, pages are going to be movable

• GFP_NOWAIT: __GFP_KSWAPD_RECLAIM – unmovable kernel allocation, cannot direct reclaim

• GFP_ATOMIC: __GFP_KSWAPD_RECLAIM | __GFP_HIGH – like GFP_NOWAIT but higher priority, can dip into reserves
6 /
26

Page allocator – memory reclaim

• Eventually memory will become (nearly) all used due to caching file contents
(page cache) as well as kernel objects, for faster access

• Each zone has watermarks (scaled to its size) min < low < high, free pages
checked during page allocation
– Below low watermark: wake up kswapd kthread to reclaim up to high watermark

– Below min watermark: the allocation itself has to reclaim up to min watermark

• Reclaim will try to evict a mix of userspace pages and kernel objects
– Anonymous pages (from mmap(MAP_PRIVATE)) must be swapped out first

– Page cache must be written back when dirty, or simply discarded when clean

– Kernel objects: each type of reclaimable objects registers shrinker callbacks with specific
implementation of both tracking of hot/coldness, and actual freeing

• To minimize disk I/O and latency, we want to reclaim cold pages
– Struct pages are linked on a LRU list sorted from most recent (head) to least recent (tail)

7 /
26

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

8 /
26

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed

8 /
26

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed
recent stale

5 1 2 3 4 6 7 8 9 10

8 /
26

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed
recent stale

5 1 2 3 4 6 7 8 9 10

11 Page 11 accessed

8 /
26

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed
recent stale

5 1 2 3 4 6 7 8 9 10

11 Page 11 accessed

recent stale

11 5 1 2 3 4 6 7 8 9

8 /
26

LRU list – ideal model

recent stale

1 2 3 4 5 6 7 8 9 10

Page 5 accessed
recent stale

5 1 2 3 4 6 7 8 9 10

11 Page 11 accessed

recent stale

11 5 1 2 3 4 6 7 8 9

10Page 10 evicted 8 /
26

LRU – anonymous/file split

• Anonymous and file pages have distinct properties
– Clean file pages can be just evicted, anonymous have to be swapped out at least once...

– Historically, reclaim has been biased towards file pages more than anonymous

• Single list would be ineffective when reclaiming just one type
• Hence separate anon and file LRU lists

– But now we have to choose which one (or both) to reclaim, and balance their sizes

9 /
26

LRU – anonymous/file split

• Anonymous and file pages have distinct properties
– Clean file pages can be just evicted, anonymous have to be swapped out at least once...

– Historically, reclaim has been biased towards file pages more than anonymous

• Single list would be ineffective when reclaiming just one type
• Hence separate anon and file LRU lists

– But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

1 2 3 4 5 6 7 8 9 10

9 /
26

LRU – anonymous/file split

• Anonymous and file pages have distinct properties
– Clean file pages can be just evicted, anonymous have to be swapped out at least once...

– Historically, reclaim has been biased towards file pages more than anonymous

• Single list would be ineffective when reclaiming just one type
• Hence separate anon and file LRU lists

– But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

1 2 3 4 5 6 7 8 9 10

9 /
26

LRU – anonymous/file split

• Anonymous and file pages have distinct properties
– Clean file pages can be just evicted, anonymous have to be swapped out at least once...

– Historically, reclaim has been biased towards file pages more than anonymous

• Single list would be ineffective when reclaiming just one type
• Hence separate anon and file LRU lists

– But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

1 2 3 4 5 6 7 8 9 10

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10
9 /
26

LRU – active/inactive split
• Ideal LRU model not achievable in practice

– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track hotter and colder pages separately

• Hence separate active and inactive LRU lists for each type
– Also virtual fifth list for unevictable pages – not relevant to reclaim, not linking any pages today

– All together that’s called lruvec

10 /
26

LRU – active/inactive split
• Ideal LRU model not achievable in practice

– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track hotter and colder pages separately

• Hence separate active and inactive LRU lists for each type
– Also virtual fifth list for unevictable pages – not relevant to reclaim, not linking any pages today

– All together that’s called lruvec

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10

10 /
26

LRU – active/inactive split
• Ideal LRU model not achievable in practice

– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track hotter and colder pages separately

• Hence separate active and inactive LRU lists for each type
– Also virtual fifth list for unevictable pages – not relevant to reclaim, not linking any pages today

– All together that’s called lruvec

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10

10 /
26

LRU – active/inactive split
• Ideal LRU model not achievable in practice

– Capturing each memory access for precise tracking would be prohibitively slow

– Approximated by detecting if page has been accessed since last check

– More effective if we track hotter and colder pages separately

• Hence separate active and inactive LRU lists for each type
– Also virtual fifth list for unevictable pages – not relevant to reclaim, not linking any pages today

– All together that’s called lruvec

anon LRU

1 4 5 6 8

file LRU

2 3 7 9 10

anon active 1 4 5

anon inactive 6 8

file active 2 3 7

file inactive 9 10

unevictable LIST_POISON1 LIST_POISON2

lruvec 10 /
26

LRU – node/memcg lruvecs

• Four reclaimable LRU lists per lruvec
– Large part of reclaim heuristics is to decide how many pages to scan and try to reclaim in

each one (shrink the list)
• Pages are taken from the tail of each list, can be moved to the head of another list

(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

11 /
26

LRU – node/memcg lruvecs

• Four reclaimable LRU lists per lruvec
– Large part of reclaim heuristics is to decide how many pages to scan and try to reclaim in

each one (shrink the list)
• Pages are taken from the tail of each list, can be moved to the head of another list

(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

• In practice, there are many lruvecs
– Different memory cgroups have distinct lruvecs, for memcg reclaim

• Global memory reclaim has to iterate over all memcgs

– Different NUMA nodes have distinct lruvecs, as nodes are reclaimed separately
• Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

11 /
26

LRU – node/memcg lruvecs

• Four reclaimable LRU lists per lruvec
– Large part of reclaim heuristics is to decide how many pages to scan and try to reclaim in

each one (shrink the list)
• Pages are taken from the tail of each list, can be moved to the head of another list

(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

• In practice, there are many lruvecs
– Different memory cgroups have distinct lruvecs, for memcg reclaim

• Global memory reclaim has to iterate over all memcgs

– Different NUMA nodes have distinct lruvecs, as nodes are reclaimed separately
• Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

• Summary: each userspace page placed on a LRU list in one of many lruvecs:

11 /
26

LRU – node/memcg lruvecs

• Four reclaimable LRU lists per lruvec
– Large part of reclaim heuristics is to decide how many pages to scan and try to reclaim in

each one (shrink the list)
• Pages are taken from the tail of each list, can be moved to the head of another list

(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

• In practice, there are many lruvecs
– Different memory cgroups have distinct lruvecs, for memcg reclaim

• Global memory reclaim has to iterate over all memcgs

– Different NUMA nodes have distinct lruvecs, as nodes are reclaimed separately
• Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

• Summary: each userspace page placed on a LRU list in one of many lruvecs:

Root memcg Memcg1 Memcg2 Memcg3 Memcg4 Memcg5

Node 0 lruvec lruvec lruvec lruvec lruvec lruvec

Node 1 lruvec lruvec lruvec lruvec lruvec lruvec 11 /
26

Page states relevant to reclaim
• Determined by page flags, mainly the following:

– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page
– CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

12 /
26

Page states relevant to reclaim

Page flags

LRU Active Referenced Workingset

struct page

• Determined by page flags, mainly the following:
– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page
– CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

12 /
26

Page states relevant to reclaim

Page flags

LRU Active Referenced Workingset

struct page

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

• Determined by page flags, mainly the following:
– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page
– CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

12 /
26

Page states relevant to reclaim

Page flags

LRU Active Referenced Workingset

struct page

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

• Determined by page flags, mainly the following:
– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page
– CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

12 /
26

Page states relevant to reclaim

Page flags

LRU Active Referenced Workingset

struct page

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

• Determined by page flags, mainly the following:
– LRU – page is on any LRU list, Active – page is on active list

– Referenced – inactive page has been accessed “recently”

– Workingset – page is considered part of active userspace’s workingset

• Affected by Accessed bit in page tables entries (PTE’s) that map this page
– CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

6 5 4 3 2 1 0

Dirty Accessed U/S R/W P

Page table entry

PTE PTE
12 /
26

Not present

13 /
26

After fault is handled,
the userspace access
is restarted and sets

PTE Accessed
bit immediately

!active

!referenced

#PTE.A=1

Not present

kern/usr
access

initial page fault

13 /
26

!active

!referenced

#PTE.A=1

Not present

kern/usr
access

initial page fault

13 /
26

Reclaim filters out the
initial access by only

setting the referenced
Page flag, but keeping
Page on inactive list

!active

referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

Not present

kern/usr
access

reclaim
keeps

initial page fault

13 /
26

!active

referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

Not present

kern/usr
access

reclaim
keeps

initial page fault

13 /
26

Another access sets
PTE active bit

!active

referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
keeps

initial page fault

13 /
26

!active

referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
keeps

initial page fault

13 /
26

Reclaim sees both
referenced flag

and PTE active, so
page was accessed

multiple times,
activate it

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
keeps

initial page fault

reclaim
promotes

13 /
26

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
keeps

initial page fault

reclaim
promotes

13 /
26

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

Reclaim sees no
active bit PTEs,
page was not

accessed, evict it

13 /
26

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

Active list reclaim
(deactivation)

referenced flag
doesn’t matter

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

Not present

userspace

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec.
file
only

userspace
Executable file pages
are kept on active list
as long as they are

accessed

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec.
file
only

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec.
file
only

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

Executable file pages
are also immediately

activated 13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

Pages accessed from
multiple processes

are also immediately
activated

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

userspace
Access by kernel such as
by get_user_pages()

is handled by
mark_page_accessed()

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

kernel

userspace

13 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

kernel

kernel

userspace

13 /
26

Workingset Detection

• Premise: transitioning workloads might be thrashing if pages are not accessed often
enough while on inactive list to have chance to be promoted
– Inactive list is intentionally small, the workload’s working set might be just larger

– If a recently reclaimed page is faulted in again, we don’t know if it’s new or thrashing

– Meanwhile the pages on active list might be idle, but we won’t know

• Example: Workload accesses pages 7 8 9 10 11 7 8 9 10 11 ...
– The access distance is 5 (4 different pages between two accesses to the same page)

– Inactive list only has 4 pages (NR_inactive = 4), thus each access is a fault

– Pages 1 – 6 were active before but now may be actually idle

• Idea: determine this access distance, even for pages that have been evicted
– Use shadow entries of radix tree/XArray for evicted pages to store information

– Precise tracking again impossible, need to approximate

active inactive evicted

1 2 3 4 5 6 11 10 9 8 7
14 /
26

Approximating Access Distance
• Observation: Access that causes page fault places the page to inactive list head, pushes all other

pages towards tail, evicts tail page
• Observation: Access on inactive list results in activation, also pushes all pages previously ahead of

the page on the inactive list towards tail
• Thus: sum of evictions and activations over some time period means at least N inactive page

accesses happened during that period
• And: pushing an inactive page N slots towards tail needs at least N inactive page accesses

• Eviction of a page means at least NR_inactive pages were accessed while it was in memory

• If we note sum of evictions + activations at the moment of eviction (E), and at the moment of refault
(R), the difference (R-E) approximates number of accesses while the page was evicted – called
refault distance

• Complete minimum access distance: NR_inactive + (R–E)

• Page would not be evicted if: NR_inactive + (R–E) <= NR_active + NR_inactive

• Simplified: (R–E) <= NR_active

– When this inequality holds on refault, activate page immediately

• Full writeup: see mm/workingset.c
15 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

kernel

kernel

userspace

16 /
26

!active

!referenced

#PTE.A=0

!active

referenced

#PTE.A=0

active

?referenced

#PTE.A=0

!active

!referenced

#PTE.A=1

!active

!referenced

#PTE.A>1

!active

referenced

#PTE.A>0

active

?referenced

#PTE.A>0

Not present

kernel

kernel

usr (diff.
process)

userspace usr

kern/usr
access

reclaim
demotes

reclaim
keeps

initial page fault

reclaim
promotes

exec. file only

exec.
file
only

kernel

kernel

kernel

userspace

workingset
refault

activation

16 /
26

Workingset Detection Implementation

• Initially implemented for file pages only, later also for anonymous pages

• Counter of evictions plus activations in lruvec->nonresident_age

– Counters of refaults in lruvec->refaults[ANON_AND_FILE]

• Refault distance (R-E)is compared to workingset size

– Sum of all LRU sizes except the inactive list of the page’s type

– File page refault distance compared to NR_active_file + NR_active_anon +
NR_inactive_anon

– Anon page refault distance compared to NR_active_anon + NR_active_file +
NR_inactive_file

– But if swap is not available, anon list sizes are not included in the sums

• When page is deactivated, its Workingset flag is set

– The flag is recorded in shadow entry, and set again upon refault, never cleared (i.e. only
when stale shadow entries are reclaimed)

– Refaults with Workingset flag restored play role in reclaim cost model
17 /
26

Global Reclaim Algorithm

• Per-node kswapd or direct reclaim when a node is below watermarks – both
eventually call shrink_node()

• Decide if anon and/or file pages should be deactivated – active/inactive balancing
– Goal: large active list with low amount of reclaim work, small inactive list as a busy

“proving ground”, except when the workload’s working set is transitioning

– Formula in inactive_is_low(), based on sqrt of the active+inactive list sizes
• 1:1 up to 100MB worth of memory on the LRU lists

• 3:1 (active:inactive) at 1GB memory – 25% pages should be on inactive list

• 320:1 at 10TB memory

– Deactivation allowed when inactive list size is below the target ratio

– Or when workingset refaults are happening, based on a rather coarse check (the counter
of file workingset refaults of anon/file changed since last reclaim)

18 /
26

Global Reclaim Algorithm #2

Anon/file balancing – decide how much to shrink from each type’s LRU
• Some corner case decisions first

– “Many” (based on reclaim priority) inactive file pages and we do not deactivate file
pages, prioritize file reclaim – “cache trim mode”

– Too few file pages (active+inactive) with “many” inactive anon pages and we do not
deactivate anon pages, prioritize anon reclaim – “file is tiny”
• Tries to prevent runaway feedback loop where small file LRU means no chance to get pages

promoted

• Iterate over all memcgs, calling shrink_lruvec()

• Determine how much to scan in each LRU list by get_scan_count()

– Consider only file LRUs – swapping not possible or cache trim mode enabled

– Consider only anon LRUs – “file is tiny”

– Scan both equally – close to OOM (but swappiness is not 0) - no time for fine balancing

– Balance anon and file LRUs according to Fractional Cost Model
19 /
26

Global Reclaim Algorithm #3

Anon/file fractional cost model – in get_scan_count()
• Idea: if reclaim causes more IO for file pages than anon pages, put more pressure on

anon pages, and vice versa – pressure is inversely proportional to to cost

• We count workingset refaults that restore Workingset flag (which means a formerly
active page was reclaimed), and dirty page write-outs, as the reclaim cost
– To soften corner cases, soften the resulting pressure from interval [0, 1] to [1/3, 2/3]

• This is also weighted by vm.swappiness sysctl, with range from 0 to 200 (default 60)

– vm.swappiness=0 – anon reclaim has infinite cost, reclaim only file pages

– vm.swappiness=100 – anon and file pages have same IO cost

– vm.swappiness=200 – file reclaim has infinite cost, reclaim only anon pages

• The result is fraction between 0 and 1 for anon, and for file, both add up to 1
• Calculate how many pages to scan from each LRU list - target

– NR_pages >> reclaim_prio (prio starts at 12 – 1/4096 of the list, prio decreased each round)

– Apply calculated fraction, or set to 0 if we are not reclaiming the particular type
20 /
26

Global Reclaim Algorithm #4

• The LRU list shrinking itself

– Call shrink_list() in a loop, scan up to 32 pages (SWAP_CLUSTER_MAX) in iteration
• Skip active list if deactivation is not allowed

– Isolate pages from tail of list, then deactivate, keep or reclaim according to their flags and
page table entries with active bit set

– Terminate when budget (initialized by get_scan_count() targets) is exhausted for all lists

– After having reclaimed the target number of pages (SWAP_CLUSTER_MAX or high
watermark), keep scanning to deplete the rest of the budget, but:
• Stop scanning the file/anon type with lower remaining budget

• For the other type, adjust the budget to keep the original anon/file ratio

• Example: target was 64 file, 32 anon pages, after scanning and reclaiming 16 from each, scan
additional 16 file pages (so the result is 32 file, 16 anon)

– Finally, scan 32 pages from active anon list
• If swap is available and inactive anon is low

• Ignores prior decision whether to deactivate anon

21 /
26

madvise(2) - reclaim related flags

• MADV_DONTNEED – throw away private anonymous pages, unmap file pages

– might be reclaimed later due to memory pressure, no explicit reclaim action

• MADV_FREE (since 4.5) – private anon only – clear page dirty, referenced flags,
move it to inactive file list
– pages will be discarded (destructive, no swap-out) soon in case of memory pressure

– a write to the page before the discard will cancel the discard

– cheaper than MADV_DONTNEED – no immediate page table zapping

Since 5.4, also two new always non-destructive modes:
• MADV_COLD – deactivate pages (move to inactive list, clear referenced flags)

– swap-out or dirty page writeback will happen during reclaim

– only pages not mapped by multiple processes

• MADV_PAGEOUT – immediately reclaim pages

– including swap-out or dirty page writeback

– only pages not mapped by multiple processes
22 /
26

Page reclaim - conclusion

• This was an overview, implementation has even more details and special cases
• Some topics omitted completely

– Writeback, swapping, dirty throttling, memcg reclaim, slab reclaim (shrinkers),
watermarks handling, kswapd vs direct reclaim, reclaim/compaction, OOM, PSI…

• Complex system, results of years of evolution, including big recent changes
– No overall documentation

• Many moving parts, hard to predict behavior, hard to evaluate patches!
– Elaborate cost models applied only to 1/3 of decision space

– OTOH, major decisions made by looking if a number has changed since last time

– Explicit corner case heuristics against undesired feedback loops

– We’ve seen issues (in older kernel) e.g. with file pages thrashing and anon not reclaimed

23 /
26

Multigenerational LRU Framework

• Patchset from Yu Zhao (Google), v1 in March 2021, merged in v6.1 (Dec 2022)
• Multiple generations (at least 3) instead of active/inactive lists – separate lists

(per file/anon and zone), generation number in page flags word
– Faults go to youngest generation, buffered file accessed to oldest

– Accessed bit (found during scan) moves page to youngest generation

• Generations also divided to tiers for more fine-grained mark_page_accessed()
counting, tier also part of page flags, but not separate lists
– Balancing tiers using workingset refault info, PID controller-like feedback loop

• Scanning for accessed bits through page table walks, not lru lists
– Attempts to exploit spatial locality, avoid expensive rmap walks (fallback to lru on sparse

mappings); was actually done in old Linux versions

– Maintains lists of mm structs per memcgs, skipping of sleeping processes and inactive
PMDs, no page level zigzag between vma’s

• Eviction processes oldest generation, balances between file and anon by refaults
24 /
26

Multigenerational LRU Framework

• Optional. Has sysfs knobs for run-time enable, protection, aging monitoring
• Pros:

– Kswapd reduced rmap walk CPU usage, reduced direct reclaim latency

– Tools for workload scheduling decisions, proactive reclaim

– Some success stories – reduced swap storms, improved throughputs…

• Cons:
– Changes many things at once, kernel development prefers incremental improvements

• Feedback not fully successful, “Linus likes this” helped merging anyway

– Largely orthogonal to existing mechanism, not its replacement →maintenance burden

– Adds user space knobs (at least not mandatory to use)

25 /
26

Thank you.

26 /
26

	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 8 (5)
	Slide: 8 (6)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 12 (5)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 13 (5)
	Slide: 13 (6)
	Slide: 13 (7)
	Slide: 13 (8)
	Slide: 13 (9)
	Slide: 13 (10)
	Slide: 13 (11)
	Slide: 13 (12)
	Slide: 13 (13)
	Slide: 13 (14)
	Slide: 13 (15)
	Slide: 13 (16)
	Slide: 13 (17)
	Slide: 13 (18)
	Slide: 13 (19)
	Slide: 13 (20)
	Slide: 13 (21)
	Slide: 13 (22)
	Slide: 13 (23)
	Slide: 13 (24)
	Slide: 13 (25)
	Slide: 13 (26)
	Slide: 13 (27)
	Slide: 13 (28)
	Slide: 14
	Slide: 15
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26

