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Classical IPCClassical IPC
● POSIX signals

– Since UNIX Version 4
– Asynchronous notification sent to a process (thread)

● Similar to level-triggered interrupts (including masking)
● Sender uses the kill(2) syscall

– Run-time exceptions and state changes also cause signals (SIGFPE, SIGSEGV; SIGPIPE, SIGINT, SIGSTOP/SIGTSTP, 
SIGCONT, SIGTRAP)

● Receiver thread is interrupted and a signal handler is executed (installed using signal(2) or sigaction(2))
– Race conditions due to nested signals
– Calling non-reentrant functions (e.g. malloc(), printf()) is undefined behavior
– Interruption of some syscalls

● Real-time signals
– Queued, guaranteed sending order
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Classical IPCClassical IPC
● Anonymous pipes
● Named pipes

– Persistent uni-directional pipes
● Same API as files (anonymous pipes)
● Pipe identification: File system i-node (bound to a directory entry)
● No identification of senders on the receiver end

– Writes of data larger than PIPE_BUF bytes can be interleaved

– Windows named pipes
● Dedicated namespace (Named Pipe File System \\.\pipe\)
● Non-persistent (removed when all clients close the pipe)
● Anonymous pipes are named pipes with random names
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Classical IPCClassical IPC

● UNIX domain sockets
– Reliable bi-directional stream of bytes (akin to TCP), or …
– Unordered unreliable datagrams (akin to UDP), or …
– Reliable ordered stream of datagrams between local processes

● Same API as BSD sockets
● Socket identification: File system i-node (bound to a directory entry or to an 

abstract socket namespace)
● Sending file descriptors (sendmsg(), rescvmsg()) as ancillary data

– Rudimentary capabilities
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Classical IPCClassical IPC
● Software shared memory

– POSIX Shared Memory, System V Shared Memory
● Persistent shared memory objects in dedicated namespace

– In Linux, objects created as tmpfs files (usually /dev/shm)
● shm_open(3), mmap(2), munmap(2), shm_unlink(3)
● shmget(2), shmat(2), shmdt(2)

– Memory mapped files
● Shared memory backed by a file (or anonymous memory)
● mmap(2), munmap(2)
● memfd_create(2)

– Removed when no longer referenced
– File sealing
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Classical IPCClassical IPC
● Message passing

– Synchronous / asynchronous, blocking / non-blocking sending
– Synchronous / asynchronous, blocking / non-blocking receiving
– Symmetrical / asymmetrical / indirect addressing
– POSIX message queues, System V Message Passing

● Indirect addressing using a message queue (key for msgget(2), i-node for mq_open(3))
● msgsnd(2), mq_send(3) asynchronous non-blocking (unless the queue is full)
● msgrcv(2), mq_receive(3) synchronous blocking by default

– Windows Messages
● Symmetrical addressing using window/thread handles
● SendMessage() synchronous non-blocking, SendMessageCallback(), SendNotifyMessage(), PostMessage() 

asynchronous non-blocking
● GetMessage() synchronous blocking, PeekMessage() synchronous non-blocking
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Classical IPCClassical IPC
● IPC abstractions

– D-Bus
● Single-node middleware replacing CORBA (GNOME) and DCOP (KDE)
● Software bus abstraction (end-points communicating over a shared virtual 

channel)
– System bus vs. session bus
– End-points identified by a component string and unique connection (instance) name
– Method calls and signals implemented on top of message passing

● Synchronous one-to-one request-response (libdbus)
● UNIX domain sockets, TCP sockets, kdbus (abandoned), BUS1

● Asynchronous publish/subscribe (dbus-daemon)
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Classical IPCClassical IPC
● IPC abstractions

– Doors
● Synchronous remote procedure call
● Originally implemented for Spring, later ported to Solaris
● Request and reply buffer, request and reply list of file descriptors

– Binder (OpenBinder)
● Middleware and component framework (similar to Microsoft COM), originally implemented for BeOS, now used by Android
● Synchronous remote method invocation

– Custom kernel IPC mechanism
● Method invocation implemented as thread migration

● BINDER_WRITE_READ ioctl with a request and reply buffer
● Object reference tracking

– Windows Dynamic Data Exchange, Object Linking and Embedding, Component Object Model
● Based on [Advanced] Local Procedure Call ([A]LPC)
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Mach IPCMach IPC
● Prototypical microkernel asynchronous message passing

– Ports
● Receive end-points and associated message queues

– Port rights
● Client capabilities for accessing a port (send, receive, send-once)

– Only a single server can have a receive right
● Each task has an initial set of port rights

– Communicating with the kernel, etc.

– Tagged message structure
● Kernel enforces type correctness
● Port rights can be also passed
● Timeouts
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Mach IPCMach IPC
● “When poor implementation casts a shadow on the whole idea”

– IPC overhead of 50 % compared to monolithic UNIX
● With a single UNIX server
● Root causes

– Complex non-optimized kernel-side code
● Tagged data type evaluation, handling of timeouts, etc.
● Dynamic data structures

● But the implementation only uses linked lists
● Excessive cache footprint

– Asynchronicity rarely used in practice
● User space tasks (mostly ported from UNIX) use synchronous communication and blocking I/O
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The Era of Synchronous IPCThe Era of Synchronous IPC
● L3 (1988), L4 (1993) by Jochen Liedtke

– IPC overhead of 3 % compared to monolithic UNIX
● With a single UNIX server
● Single IPC call overhead comparable to single syscall overhead in UNIX (approx. 20 times faster 

than on Mach)
– Synchronous IPC

● Explicit client/server rendez-vous and thread migration
– No need for full context switch (address space switch is sufficient)
– No buffering, no scheduling, data passed mostly directly in registers

● Highly target-optimized implementation
– Small working set, cache-friendly code
– No complex algorithms or dynamic data structures
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The Era of Synchronous IPCThe Era of Synchronous IPC
● L3 (1988), L4 (1993) by Jochen Liedtke

– Drawbacks
● Non-portable microkernel (by design)

– Poor code readability and maintainability
– Preoccupation with single-threaded performance conflicts with other goals (e.g. throughput)

● Design issues of synchronous IPC
– Unresponsive server blocks the client indefinitely

● Originally solved using timeouts (in hindsight not a great solution)
– Asynchronous communication on top of synchronous IPC

● Abstraction inversion anti-pattern (i.e. requires multithreading)
– Scalability suffers on modern massively parallel architectures



 14

The Return of Asynchronous IPCThe Return of Asynchronous IPC
● The best of both worlds

– Synchronous IPC still superior in specific use cases
● Synchronous blocking semantics, single-core communication

– Asynchronous IPC reasonably simple, cache-friendly with fast-path kernel code
● Bounded kernel buffers (additional buffering possible on the client user space side)
● Intelligent bookkeeping data structures (hash tables, trees)
● Simple IPC message structure (only integer payload that fits into registers)

– Additional semantics for memory copying and memory sharing possible
● Possibility to build rich abstractions in user space

– Actors, agents, continuations, futures, promises
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HelenOS IPCHelenOS IPC
● Basic design

– Asynchronous message passing over uni-directional connections
● 6-integer payload (1st integer interpreted as interface/method ID)
● Bounded kernel buffers
● Every message paired with a reply (6-integer return value)
● New connections established via existing connections (capabilities)

– Security policy delegated to the connection brokers
– Every client initially connected to the Naming Service (default broker)

● Message forwarding (recursive)
● Kernel events and hardware interrupts converted to IPC messages (no reply)
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HelenOS IPCHelenOS IPC
● Kernel API

– Global method IDs with special semantics
● IPC_M_CONNECTION_CLONE (clone a connection capability from the client to the server)
● IPC_M_CONNECT_TO_ME (establish a callback connection)
● IPC_M_CONNECT_ME_TO (establish a new connection)

– When forwarded, the connection is potentially established to the next receiver
● Broker (Naming Service, Location Service, Device Manager, VFS, etc.) connects the client to the target server

● IPC_M_SHARE_IN / IPC_M_SHARE_OUT (receive/send a shared virtual address space area)
● IPC_M_DATA_READ / IPC_M_DATA_WRITE (receive/send bulk data)
● IPC_M_STATE_CHANGE_AUTHORIZE (update a server state on behalf of a different client)

– Three-way handshake
● IPC_M_PHONE_HUNGUP (connection close)
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HelenOS IPCHelenOS IPC
● User space API

– Async framework
● Goal: Writing single-threaded sequential client code that makes effective use 

of the asynchronous IPC
– User space-scheduled cooperative threads (fibrils)

● Efficient parallelism (preempted only when blocking on waiting for IPC replies)
● Abstracting the low-level IPC connections into sessions

– Each session can have a different threading model
● Abstracting the atomic low-level IPC messages into logical exchanges

– Easily implementing complex communication protocols
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HelenOS IPCHelenOS IPC
async_exch_t *ns_exch = async_exchange_begin(session_ns);

async_sess_t *sess =
async_connect_me_to_iface(ns_exch, INTERFACE_VFS, SERVICE_VFS, 0);

async_exchange_end(ns_exch);

async_exch_t *exch = async_exchange_begin(sess);

ipc_call_t answer;
aid_t req =

async_send_3(exch, VFS_IN_OPEN, lflags, oflags, 0, &answer);

async_data_write_start(exch, path, path_size);

async_exchange_end(exch);

// Do some other useful work in the meantime

sysarg_t rc;
async_wait_for(req, &rc);

if (rc == EOK)
fd = (int) IPC_GET_ARG1(answer);
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Synchronization MechanismsSynchronization Mechanisms

● Mutual exclusion
– Locks, semaphores, condition variables, etc.

● Based on atomic test-and-set operations
– Temporal separation, intuitive semantics, well-known 

characteristics
– Overhead, restriction of concurrency, blocking
– Adverse effects

● Convoying, priority inversion, starvation, deadlock
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Synchronization MechanismsSynchronization Mechanisms

● Non-blocking mechanisms
– Lock-free data structures, transactional memory, hazard pointers, 

read-copy-update, etc.
● Based on atomic read-modify-write operations

– Logical separation vs. eventual consistency
– No restriction on concurrency

● Especially suitable for concurrent workloads (e.g. asynchronous IPC)
– Less intuitive semantics, surprising characteristics



 21

Non-blocking TaxonomyNon-blocking Taxonomy
● Wait-freedom

– Guaranteed system-wide progress and starvation-freedom (all operations are finitely bounded)
– Wait-freedom algorithms always exist [1], but the performance of general methods is usually 

inferior to blocking algorithms
– Wait-free queue by Kogan & Petrank [2]

● Lock-freedom
– Guaranteed system-wide progress, but individual threads can starve
– Four phases: Data operation, assisting obstruction, aborting obstruction, waiting

● Obstruction-freedom
– Guaranteed single thread progress if isolated for a bounded time (obstructing threads need to be 

suspended)
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Read-Copy-UpdateRead-Copy-Update
● Family of generic non-blocking synchronization mechanisms

– Many different implementations with various characteristics
– Targeting read-mostly pointer-based data structures with immutable values

● Useful for many practical data structures (e.g. linked lists, hash tables, etc.)
● Unlimited number of readers without blocking (running concurrently with other readers and 

writers)
– Little to no overhead on the reader side (smaller than taking an uncontended lock)
– Readers have to tolerate “stale” data and late updates
– Readers have to observe “safe” access patterns

● Synchronization among writers out of scope of the mechanism
– RCU only guarantees consistency between readers and writers

● Optional provisions for asynchronous reclamation
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Read-Copy-UpdateRead-Copy-Update
● Read-side critical section

– Delimited by read_lock() and read_unlock() non-blocking methods
● Protected data cannot be referenced outside of the critical section

– Safe access() methods for reading pointers
● Each pointer can be read at most once in a critical section
● No restriction on reading the pointed values

● Quiescent state
– A scheduling entity (thread, CPU, etc.) being outside its critical section

● Grace period
– A point in time when all scheduling entities have passed through a quiescent state (at least once)
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Read-Copy-UpdateRead-Copy-Update

● Synchronous write-side update
– Atomically unlinking an old element
– Running the synchronize() method

● Blocks until a grace period elapses
– All readers pass their quiescent state (i.e. they no longer reference the unlinked 

data)

– Possibly reclaiming/freeing the unlinked data
– Inserting a new element using a safe assign() method

● Avoiding store reordering on architectures with weak memory ordering



 25

Synchronous Update ExampleSynchronous Update Example

head

next v0

next v1

I.

Atomic pointer update to remove
the element with v0 from the list
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Synchronous Update ExampleSynchronous Update Example

head

next v0

next v1

I.

head

next v0

next v1

II.

Blocking on synchronize()
During the grace period, preexisting readers
can still access the “stale” element with v0
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Synchronous Update ExampleSynchronous Update Example

head

next v0

next v1

I.

head

next v0

next v1

II.

head

next v2

next v1

III.

No reader can reference the element with v0 anymore,
it can be safely reclaimed
New element with v2 can be atomically inserted
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Read-Copy-UpdateRead-Copy-Update

● Asynchronous write-side update
– Using a call() method

● Non-blocking operation registering a callback
● Callback is executed after a grace period elapses

– Using a barrier() method
● Waiting for all queued asynchronous callbacks to finish
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Grace Period DetectionGrace Period Detection
● Cornerstone of any RCU implementation

– Balancing the trade-off between precision and overhead
● Any extension of a grace period is also a grace period
● Long (imprecise) grace periods

– Blocking synchronous writers for a longer time
– Increasing memory usage due to unreclaimed “stale” data

● Short (precise) grace periods
– Increasing overhead on the reader side

● More heavy-weight operations needed (memory barriers, atomics)

– Looking for naturally occurring quiescent states
● Events that automatically guarantee the end of a critical section (for the given RCU implementation)

– Context switch, exception (timer tick), exit to user space, etc.
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Grace Period DetectionGrace Period Detection

[3]
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