
_01

A tour of the
Fuchsia system
interface

May 2023 Other info here

Questions: @

_

Link to the presentation

_02

Introduction

The system interface (syscalls) are the building
blocks of an operating system.

It’s like the alphabet of a language.

_03

Introduction

Fuchsia’s system interface is different from
Mac/Linux/Windows.

This talk is about understanding Fuchsia’s alphabet,
so we can make some sentences.

Each language implies a worldview, so does each
system interface.

_04

Actors

00

_05

Tasks Actors

Fuchsia has the regular execution
abstractions:

Threads: unit of execution

Processes: address space + resources + threads

Jobs: group of processes

They work as you expect them, which each
process having an its own isolated address
space.

The system scheduler multiplexes threads
over available cores.

Tasks

Thread, Processes and Jobs

_06

Objects Actors

Fuchsia has a rich object-based system interface

Each different object specializes a resource:

● Memory
● Processor time
● I/O
● Exceptions
● …..

Threads create these objects, the process holds them

Applications refer them as “handles”: just an uint32_t’s

The object type needs to be tracked by the application
code.

Objects

kernel object creation

_07

Objects Actors

Syscall input
● Service index → object method
● Thread context → process
● Arguments in registers

○ handle value

Using objects

kernel object use

Does it remind you of file descriptors?

_08

Objects Actors

New handle “points” to the same kernel object

You can reduce the rights, or keep the same
rights*.

Rights modulate the set of methods that are
available via that handle.

Handle duplication

Duplication of handles

Unix FDs don’t carry rights, therefore dup()
and variants only take the source FD.

zx_hande_close(1) ?

_09

Event Actors

Simplest object: can be waited on or signaled.

Signaling and waiting apply to events and other
objects hence zx_object rather than zx_event

Restricted form of polymorphism.

The Event

kernel object use

_010

IPC

01

_011

Channel IPC

zx_channel_create(0, &ep1, &ep2);

zx_channel_write(ep, bytes[], handles[]);

zx_channel_read(ep, &bytes[], &handles[]);

zx_object_wait(ep, ZX_CHANNEL_READABLE);

Message passing is core to Fuchsia

The Zircon IPC workhorse is the channel

Handles “move” from process → message during write.

Max length of a message is 64KiB, max # handles is 64

Neither reading or writing blocks

_012

Channel IPC

 Process Creation and IPC
“bootstrapping”

During the creation of the first thread, the caller
gets to pass one handle.

● 99% of the times it should be a channel
endpoint

● ..and the first message should be the
child’s environment.

Plot twist: the first message usually contains one
or more channels.

_013

Higher Order
IPC

02

_014

Manager Higher Order IPC

In Fuchsia there is a process that directly or
indirectly starts all other processes

● Has a channel endpoint to all the children
● Keeps track of the lifetime

The manager knows what each process is
meant to do

● What they need
● What they offer

Enter the Manager

Comes as a json-like metadata associated with
the binary(es) of each process

_015

Namespaces Higher Order IPC

The manager has the namespaces for all the
managed processes

● Routes “needs” with “offers”

We don’t need to care about which process is
actually the client!

● Having the right channel endpoint and being able
to write to it is all the authorization needed

● Does not need to be the original process

Connecting client and Server

The “protocol” usually requires the client to
send a channel endpoint

_016

Connection Completed

Higher Order IPC

_017

Fuchsia Vs
Others

03

_018

Versus

Monolith vs Micro
Kernels

Monoliths are fast: Just two Syscalls
to open and configure a serial port

_019

Versus

Recall the manager has metadata for each
binary from the start

● Normally starts servers lazily

Going Faster + Saving Memory

The client should be optimistic and pipeline the
commands:

1. Open/Connect
2. Configure/Write
3. Close

_020

Security

A fuchsia process has inherently no access to
anything.

● The creator seeds it with the first channel
● The creator fully controls the namespace

Defaults are important

_021

Q&A

_022

The End

Thank You!

_023

“A capability (known in some systems as a key) is a communicable, unforgeable token of
authority. It refers to a value that references an object along with an associated set of
access rights. A user program on a capability-based operating system must use a
capability to access an object. Capability-based security refers to the principle of
designing user programs such that they directly share capabilities with each other
according to the principle of least privilege, and to the operating system infrastructure
necessary to make such transactions efficient and secure. Capability-based security is to
be contrasted with an approach that uses traditional UNIX permissions and Access Control
Lists.

Although most operating systems implement a facility which resembles capabilities, they
typically do not provide enough support to allow for the exchange of capabilities among
possibly mutually untrusting entities to be the primary means of granting and distributing
access rights throughout the system. A capability-based system, in contrast, is designed
with that goal in mind.”

Capabilities

Wikipedia, 2023

