
 

Advanced Operating Systems
Summer Semester 2022/2023

Martin Děcký



 
Virtualization
9



 3

Monolithic KernelMonolithic Kernel

hardware

monolithic kernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC device

drivers
file system

drivers
user

mgmt
network

stack ...



 4

Single-server MicrokernelSingle-server Microkernel

hardware

application application application

privileged mode

unprivileged mode

microkernelmemory
mgmt scheduler IPC

system server
device
drivers

file system
drivers

user
mgmt

network
stack ...



 5

Multiserver MicrokernelMultiserver Microkernel

hardware

application application application

privileged mode

unprivileged mode

microkernelmemory
mgmt scheduler IPC

file system
driver server

naming
server

location
server

device driver
server

device driver
server

device driver
server

file system
driver server
file system

driver server

device
multiplexer

file system
multiplexer

network
stack

security
server

...



 6

Hypervisor (Type 1)Hypervisor (Type 1)

hardware

hyper-privileged mode

privileged mode

hypervisormemory
mgmt scheduler comm

operating system

kernel

privileged mode

unprivileged mode

app app

app app

operating system

kernel

privileged mode

unprivileged mode

app app

app app

operating system

kernel

privileged mode

unprivileged mode

app app

app app



 7

Hypervisor (Type 1) with UnikernelsHypervisor (Type 1) with Unikernels

hardware

hyper-privileged mode

privileged mode

hypervisormemory
mgmt scheduler comm

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component



 8

Effective VirtualizationEffective Virtualization
● Popek/Goldberg conditions on instruction set effective virtualization

– Concerns instruction sets with a privileged and a non-privileged mode
– Definitions

● Virtualizable instructions
– Instructions that always trap when executed in non-privileged mode

● State-altering instructions
● State-affected instructions

– Instruction set is virtualizable if every state-altering and state-affected instruction is also 
a virtualizable instruction

● Classical IA-32 contains several critical instructions that do not meet this condition
– SGDT, SIDT, SLDT, POPF, PUSHF, POP, PUSH, MOV, CALL, JMP, INT, RET



 9

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Non-transparent

– Partitioning
● “Shared kernel virtualization”

– Logical separation of user space tasks into containers
– No true VM abstractions

● Traditional OS abstractions with additional layer of resource management and object visibility

– Paravirtualization
● Voluntary cooperation between VM and hypervisor

– VM replaces state-altering instructions with hypercalls and adapts the output of state-
affected instructions

– Also usable as a performance improvement (e.g. I/O) for transparent virtualization



 10

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization

● Transparent
– Emulation
– Dynamic translation

● More efficient emulation that tries to separate critical and non-critical 
instructions

– Whenever a code page is executed, critical instructions are replaced by explicit 
traps

– VM usually provided with a read-only shadow copy to maintain integrity
– Complicated by the fact that many non-effectively virtualizable instruction sets 

also do not provide other efficient features (e.g. non-executable pages)



 11

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Transparent

– Special hardware privileged mode
● Turning critical instructions into virtualizable instructions
● Usually somewhat limited in scope (e.g. V86 on IA-32)

– Hyper-privileged mode
● Mode that affects the behavior of the privileged mode (which is then not fully privileged)

– Usually associated with an analogous set of control registers as the privileged mode
– Instructions that might be critical w.r.t. non-privileged mode are virtualizable using the hyper-

privileged mode
● PL2 (ARM), EL2/EL3 (ARM64), M-mode (RISC-V)



 12

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Transparent

– Orthogonal virtualization modes
● Separate control registers (control structures) and control instructions

– Nested virtualization possible if the control instructions are self non-critical
● No traditional traps, but VM exits (and VM entries)
● Intel VT-x (VMX), AMD AMD-V (SVM)

– Root mode (hypervisor)
– Non-root mode (guest VM)

● Hypervisor Extension (RISC-V)
– HS-mode (hypervisor-extended supervisor mode)
– VU-mode (virtual user mode), VS-mode (virtual supervisor mode)



 13

Operating System Virtualization AbstractionOperating System Virtualization Abstraction
● vCPU (virtual CPU)

– Logical extension of the (user) thread abstraction
● Entity that keeps the computational context state
● Besides the usual user context, it also tracks the privileged context

– Paravirtualization
● User context: Guest user thread running inside the VM

● Exceptions, page faults, IRQs, IPC, etc., switch to the privileged context
● Privileged context: Guest paravirtualized kernel (running in a different address space) that provides the 

environment for the guest user threads in the VM (including thread scheduling, etc.)
– Transparent virtualization

● User context: Virtual machine monitor (VMM, running in a different address space)
● Privileged context: Context of the entire guest VM

● Regular exceptions (including standard page faults) handled internally
● IRQs, some state-altering instructions and other conditions switch to the user context (VM exit)



 14

Intel VT-x (VMX)Intel VT-x (VMX)
● Crucial instructions

– VMXON / VMXOFF
● Enter / exit root mode
● 4 KiB physical location for virtualization bookkeeping (opaque)

– VMPTRLD
● Load a Virtual-Machine Control Structure (VMCS) as current

– 4 KiB physical location that stores the vCPU privileged context
● Mostly opaque, fields accessed strictly via the VMREAD / VMWRITE instructions
● Control fields (affecting the features / behavior of the virtualization, events that trigger VM exits, nested paging configuration, etc.)

● vCPU ID
● Guest fields (context of the guest VM, i.e. privileged context of the vCPU)

● RSP, RSP, RIP, RFLAGS, selectors, control registers, MSRs, interrupt/activity state
● Does not store most of the GPRs

● Host fields (context of the VMM, i.e. user context of the vCPU)
● Analogy of the guests fields (for efficiently switching to the VMM)

● Read-only fields (information about the VM exit)
● VM exit reason, interruption (IDT vectoring) state, guest-physical address of a nested page fault, I/O instruction information, etc.



 15

Intel VT-x (VMX)Intel VT-x (VMX)
● Crucial instructions

– VMLAUNCH / VMRESUME
● Launch / resume the current VMCS (i.e. execute a VM entry)

– If there is no error on the VM entry, the instruction eventually transfers to the host state of the VMCS when a VM 
exit occurs

– INVEPT / INVVPID
● Invalidate the TLB for the nested paging based on the Extended Page Table root pointer or on the vCPU ID

– VMCALL
● Hypercall to the VMM

– VMFUNC
● Possible hardware acceleration of certain VMM operations (without a VM exit)

– Currently only the Extended Page Table root pointer switching (among preset list of possible values)
– Can be used to implement efficient hardware-assisted address space switching for IPC [1]



 16

Intel VT-x (VMX)Intel VT-x (VMX)
● Crucial VM exits

– Exception or NMI
– External interrupt
– Triple fault / INIT signal (i.e. reset) / start-up IPI
– SMI events
– Interrupt / NMI window (VM is in a state where it can handle the event)
– Task switch, control register access, debug register access, CPUID, RDMSR, WRMSR, GETSEC, HLT, INVD, INVLPG, MWAIT, MONITOR, PAUSE, XSETBV, 

XSAVES, XRSTORS, PCONFIG, etc.
– I/O instruction
– APIC access
– EPT violation
– VMCALL (i.e. hypercall)
– VMX instruction (i.e. nested virtualization)
– Preemption timer
– Page-modification log full



 17

ReferencesReferences
[1] Mi Z., Li D., Yang Z., Wang X., Chen H.: SkyBridge: Fast and Secure Inter-Process Communication for 

Microkernels, in Proceedings of the 14th EuroSys Conference, ACM, 2019



 

Thank you!
Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

