

Advanced Operating Systems
Summer Semester 2023/2024

Martin Děcký

Interfaces, Abstractions
and Portability

3

3

Software & Hardware InterfaceSoftware & Hardware Interface
● Address space

– Universal abstraction for accessing data (code is a form of data)
– Physical memory

● Bytes, words, instructions (or similar)
– Virtual memory (software / device)

● Pages (or similar)
– I/O memory

● Bytes, words, ports (or similar)
● Can be embedded in physical memory (memory-mapped I/O)

– Persistent memory
● Blocks, pages (or similar)
● Can be combined with physical memory (non-volatile memory)

– Object space
● Keys, capabilities (or similar)

Source: imgflip.com

5

Physical Memory MythsPhysical Memory Myths
● Random access performance

– Seems to be O(1) in time units, but in reality it is closer to O(√n)
● Where n is the size of the working set
● Performance effects of the cache hierarchy

● Canonical physical address space
– Different views of the physical address space

● Local APIC and SMM on x86, secure/non-secure TrustZone on ARM
● Embedding of the I/O address space into the MMIO address space on x86

– Completely disjoint address spaces
● No central interconnect, but a network of nodes and address translations

Source: Roscoe T.: It’s Time for Operating Systems to Rediscover Hardware, Joint Keynote Address at USENIX ATC '21 / OSDI '21,
https://people.inf.ethz.ch/troscoe/pubs/2021-07-16-OSDIKeyNote-Handout.pdf

https://people.inf.ethz.ch/troscoe/pubs/2021-07-16-OSDIKeyNote-Handout.pdf

Source: Achermann R., Cock D., Haecki R., Hossle N., Humbel L., Roscoe T., Schwyn D.:
Generating Correct Initial Page Tables from Formal Hardware Descriptions,
In the Proceedings of the 11th Workshop on Programming Languages and Operating Systems (PLOS),
ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP), 2021,
https://retoachermann.ch/static/papers/achermann-2021-gcip.pdf

https://retoachermann.ch/static/papers/achermann-2021-gcip.pdf

8

Non-Uniform Memory AccessNon-Uniform Memory Access
● Explicitly exposed hardware topology

– Processing units, cores, packages
– NUMA nodes (directly byte-addressable memory)
– Caches

● Transparent cache coherency (ccNUMA)
– MSI, MESI, MESIF, MOSI, MOESI, Dragon, Firefly protocols
– Directory-based cache coherency

– Buses and I/O devices
● Guiding heuristics for placing execution near its working set

– numactl, libnuma

10

Device Virtual MemoryDevice Virtual Memory
● Mapping of device-visible addresses to bus-visible addresses

– Similar purpose to software virtual memory
● Isolation (i.e. safety, security)
● Mitigating fragmentation (i.e. scatter-gather functionality)
● Mitigating address range issues

– Integrated in the device DMA engine
● Graphics Address/Aperture Remapping Table

– Separate IOMMU
● Device memory paging
● Usually also implementing interrupt remapping

11

IOMMUIOMMU
● AMD-Vi, ARM SMMU
● Intel VT-d

– Usually located in the peripheral interconnect (a.k.a. north bridge)
– Address space is usually associated with a protection domain

● Endpoint is usually associated with a source ID
● Data structure that maps source IDs to protection domains
● Memory mapping using hierarchical page tables

– First-stage translation page tables essentially equivalent to the CPU page tables
– Second-stage translation for hypervisor, with nested first & second-stage translation

● Device TLB for translation caching, other caches
– ACPI DMAR (DMA Remapping Reporting) table

12

Physical Memory ManagementPhysical Memory Management

● Zones
– Continuous address ranges with specific properties

● Available, reserved, firmware, kernel code/data, etc.
● Logical properties

– E.g. < 1 MiB, < 16 MiB, < 4 GiB on x86

● Allocations
– Tracking of used frames and their owner
– Bitmaps, free lists, buddy allocation, etc.

13

CapabilitiesCapabilities

● Motivation
– Universal and pure kernel mechanism for resource management

● No specific management policy in the kernel
● Policy decision delegated to user space
● Delegation (granting) of authority over resources from the original

owner to other parties
– Including granting revocation

14

CapabilitiesCapabilities
● Usual terminology

– Capability
● Object instance representing (identifying) a specific resource
● Kernel object representing a kernel-managed resource
● Kernel proxy object identifying a user-managed resource
● User space object representing a user space resource

– Capability reference
● Unforgeable identifier (handle) to a capability

– Possibility to restrict permissions (e.g. permissible operations) and identify ownership

– Capability space
● Address space of capability references

– Typically associated with a task
● Capabilities as local identifiers within their namespace

15

Capabilities Put SimplyCapabilities Put Simply

kernel space

user space

read(0, ...);

0 1 2 3 file descriptor table
(capability space)

file descriptor
(capability reference)

vfs_file_t open file
(capability)

16

Capability OperationsCapability Operations
● Actions performed with capabilities

– Can be restricted by the capability reference
● Multiple capability references can point to the same capability

– Invoke
● Execute a “business logic” method on the target object

– Clone / Mint
● Create a duplicate capability reference (possibly with restricted permissions)

– Delegate / Grant
● Pass a duplicate capability reference (possibly with restricted permissions) to a different capability space
● In case of granting, the original ownership is kept
● Only once or recursively

– Revoke
● Forcefully removing and granted capability reference from other capability spaces

17

Capability DelegationCapability Delegation

kernel space
user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

0 1 2 3

task 1: task 2:

18

Capability DelegationCapability Delegation

kernel space
user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

recvmsg(socket, &msg, 0);

int fd;
memmove(&fd, CMSG_DATA(cmsg), sizeof(fd));

0 1 2 3 4

task 1: task 2:

19

Physical Memory ManagementPhysical Memory Management
● Representing physical memory as capabilities

– Chicken & egg problem: Capabilities, capability spaces, page tables and other
bookkeeping structures require memory for storage (i.e. capabilities)

– Recursive solution: Type hierarchy of capabilities
● Untyped memory capability type

– Representing a range of physical memory
– Initially a single capability representing the entire physical memory
– Untyped capabilities be derived ...

● … into multiple untyped capabilities (recursively splitting the physical memory)
● … into capabilities of other types

● Providing the memory for capability storage and bookkeeping
● Providing memory for other kernel objects

20

Capability Derivation TreeCapability Derivation Tree
untyped

cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

cnode
cap

thread
cap

L1 PT
cap

L2 PT
cap

1 page1 page

1 page 1 page2 pages 6 pages

10 pages

21

Capability References and SpacesCapability References and Spaces
● Naked capabilities

– Capability references identify capabilities directly
● E.g. physical memory addresses identifying untyped memory capabilities

● Encapsulated capabilities
– Capability references need to be mapped to capabilities
– Mapping database of capability space

● Fast lookup of capability references (most frequent operation)
● Reasonably fast creation / removal of capability references
● Low memory overhead and fragmentation (sparse capability space)
● Additional metadata (permissions, delegation, granting)
● Possibility for in-line storage of actual kernel objects (up to a certain size)

22

Capability References and SpacesCapability References and Spaces
● Capability space (cspace)

– Directed graph of capability nodes
● Can be implicit (no explicit object representation)

● Capability node (cnode)
– Array of capability slots

● Empty slot
● Slot pointing to a specific capability
● Slot pointing to a cnode

– Hierarchical organization of capability nodes
– Radix tree indexing

23

Hierarchical Capability Mapping DatabaseHierarchical Capability Mapping Database

kernel space

user space

00 01 11

cnode_t (10 bit index)

cnode_t (10 bit index)

thread
cap cnode_t (12 bit index)

mem_region_t

cspace

cref_t

resource

page
cap

untyped
cap

untyped
cap

untyped
cap

cnode
cap

cnode
cap

24

Capabilities Example: seL4Capabilities Example: seL4
● Kernel objects

– UntypedObject (physical memory range)
– TCBObject (thread)
– EndpointObject (IPC calls destination)
– AsyncEndpointObject (signal recipient)
– CapTableObject (array of capabilities)
– X86_4K (4 KiB frame)
– X86_4M (4 MiB frame)
– X86_PageTableObject (2nd level page table)
– X86_PageDirectoryObject (1st level page table)

25

Capabilities Example: seL4Capabilities Example: seL4

● Capability derivation
seL4_X86_Untyped_Retype(cnode_selector(phys_addr), seL4_X86_4K, ..., ..., ..., ...,
 phys_addr >> FRAME_WIDTH, 1);

seL4_X86_Untyped_Retype(cnode_selector(pt_phys_addr), seL4_X86_PageTableObject, ..., ..., ..., ...,
 pt_phys_addr >> FRAME_WIDTH, 1);

seL4_X86_Untyped_Retype(cnode_selector(pd_phys_addr), seL4_X86_PageDirectoryObject, ..., ..., ..., ...,
 pd_phys_addr >> FRAME_WIDTH, 1);

seL4_X86_PageTable_Map(cnode_selector(pt_phys_addr), cnode_selector(pd_phys_addr), virt_addr,
 seL4_X86_Default_VMAttributes);

seL4_X86_Page_Map(cnode_selector(phys_addr), cnode_selector(pd_phys_addr), virt_addr, seL4_AllRights,
 seL4_X86_Default_VMAttributes);

26

Capabilities Example: seL4Capabilities Example: seL4

Source: Heiser G.: Introduction: Using seL4
Courtesy of Gernot Heiser, UNSW Sydney, CC BY 4.0,
http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

27

Physical Memory Management ComparisonPhysical Memory Management Comparison

● Traditional
– Straightforward API
– High-level abstraction
– Portable
– Implicit policy
– Accounting out of scope
– Delegation out of scope

● Capability-based
– No implicit policy (policy set

completely by the client)
– Accounting and delegation

within the scope
– Low-level API
– Potential abstraction inversion
– Non-portable

28

Note on Memory AccountingNote on Memory Accounting
● Strict memory reservation

– Sum of virtual memory sizes <
Sum of physical memory sizes

● Swap space counted as physical
memory

– In-bound out-of-memory
condition

– More predictable
– Potential inefficient resource

usage

● Memory overcommit
– Sum of resident memory sizes < Sum of

physical memory sizes
● Decoupling memory mapping from

memory allocation
– Support for large sparse virtual address

spaces
● Potentially more efficient resource usage

– Out-of-bound out-of-memory condition
● Victim finding

– Less predictable

29

Note on CachesNote on Caches
● Separate instruction and data caches

– Self-modifying code (N.B.: including code loading)
● Virtually-indexed caches

– Mostly used for L1 instruction caches nowadays
– Cache homonyms (same VPN referring to different PFN)

● Flush on each address space switch costly
● Distinct virtual addresses unpractical
● ASID tagging (ASID management by operating system)

– Cache synonyms (different VPN referring to same PFN)
● Shared memory or multiple mappings leading to stale data
● Synonym detection, cache coloring
● Hardware synonym detection

30

Non-Volatile MemoryNon-Volatile Memory
● Historically biased towards rotational media

– Cylinder / Head / Sector Linear (Logical) Block Addressing
● Originally interface abstraction not very high

– Hard sectored Soft sectored (with remapping)
● 512 B blocks 4096 B blocks (floppy/hard drives)
● 2048 B blocks (optical drives), 2353 B blocks (raw optical drives)

– Latency several orders of magnitude larger than volatile memory
● Originally interface I/O efficiency not very important

– Single tenant
– Single request stream

31

Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media

heads cylinders
(tracks) sectors & interleaving

32

Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media
– Multi-tenant performance dominated by physical seek time
– Still mostly via single request stream

● Software I/O scheduling (shortest seek first, elevator/sweep, shortest
deadline first, etc.)

– Might not have the most accurate physical storage information (i.e.
remapping)

● I/O command batching (queuing)
– Leaving the optimal I/O order (within the batch) to hardware
– Incorporates interrupt coalescing

33

Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Differing characteristics from rotational drives
● Physical characteristics mostly unimportant
● Addressing characteristics

– Different native read/write and erase blocks
● Write amplification

– Physical addressing more like volatile memory
● Latency much closer to volatile memory

– Performance dominated by interface I/O efficiency
● High degree of internal parallelism
● Unique wear characteristics

34

Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Reflection in the I/O interface (e.g. NVMe)
● Generally provides the common LBA abstraction

– Wear leveling, block remapping and garbage collection in hardware Flash Transition Layer (FTL)
● Frequently implemented as multi-level log-based storage
● Software trim hint to indicate unused (erased) blocks
● Trade-offs between write amplification, performance, idle characteristics

● Low latency and parallel access
– “Unlimited” request queues with lock-less access
– “Unlimited” command queuing
– Interrupt coalescing & multiple interrupt groups
– Full-duplex scatter-gather DMA

35

Non-Volatile MemoryNon-Volatile Memory

● Solid-state drives
– Exposing more of the hardware architecture to software

● Addressing
– Open-channel SSD
– NVMe Zoned Namespace

● Note: Zones also useful for Shingled Magnetic Recording (SMR)
● Compute off-loading

– Basic NVMe I/O commands: Compare, Write Zeroes, Copy
– NVMe Key Value command set
– Near data computing (proposed)

36

Storage Near Data ComputingStorage Near Data Computing

● Off-loading computation to storage controller
– Decrease latency, improve throughput, decrease energy consumption
– Improve performance

● Trade-off: Lower performance of embedded cores
– Still a performance boost when compute cores are already loaded

Source: Gu B., Yoon A. S., Bae D.-H., Jo I., Lee J., Yoon J., Kang J.-U., Kwon M., Yoon C., Cho S.,
Jeong J., Chang D.: Biscuit: A Framework for Near-Data Processing of Big Data Workloads,
in Proceedings of 43rd Annual International Symposium on Computer Architecture,
ACM/IEEE, 2016

37

Memory Near Data ComputingMemory Near Data Computing

memory
matrix

row

decoder ⁞

control logic sense amps

.........

address

data

Y-gating

.........

Y

RAS

CAS

WE

38

Memory Near Data ComputingMemory Near Data Computing

memory
matrix

row

decoder ⁞

control logic sense amps

.........

address

data

filtering / computing

.........

opcode

RAS

CAS

WE

39

Memory Near Data ComputingMemory Near Data Computing

memory
matrix

row

decoder ⁞

control logic

sense amps
with gates

.........

address

data

Y-gating

.........

Y

RAS

CAS

WE

opcode

40

Generic Near Data ComputingGeneric Near Data Computing

Host

Memory
Processing
In-Memory

(PIM)

Storage In-Storage
Computing

(ISC)

Network On-Stream
Processing

(OSP)

41

Generic Near Data ComputingGeneric Near Data Computing
● Current work-in-progress

– Universal open interface standards
● Currently extensions of existing I/O interfaces (NVMe)
● Compute Express Link (CXL)

● Open questions
– Universal programming model

● Stream / flow processing
● Association of compute units with data

– Universal compute model
● ISA
● Safety and security considerations

– Off-loading vs. distributed computing

42

Kernel InterfacesKernel Interfaces
● Most monolithic kernels and microkernels have internal structure

– Monolithic kernels: So large that a structure is required
– Microkernels: Not so small that a structure is not helpful
– Subsystems, modules, classes, interfaces, etc.
– All software engineering best practices apply here

● Code is written once, but read many times
● Similar things should be done in similar ways
● Keep it simple / You aren’t gonna need it
● Don’t repeat yourself
● Clear definition of purpose, difficult to misuse, kind to errors
● Etc.

43

Kernel InterfacesKernel Interfaces
● Hardware abstraction layer

– Interface between platform-specific and platform-independent code
● Primitive data types (machine word), atomics, function pointers
● Thread context (non-volatile / preserved / callee-saved registers), interrupt context (complete

machine state)
● Address space layouts, ASIDs
● Memory mapping structures
● Interrupt vectoring, exception levels, inter-processor interrupts
● Stack layout (sizes, frame pointer, bias, red zone, tracing)
● Actual platform-specific code (initial bootstrap, kernel entries and exits, atomic operations, memory

barriers, cache management, assembly code, platform drivers)
● Platform-unification code (e.g. segmentation setup on x86, register stack engine on IA-64 & SPARC)

44

Kernel InterfacesKernel Interfaces
● Typical subsystems

– Execution management
● CPUs, execution contexts (threads), scheduling contexts, exceptions, interrupts

– Memory management
● Address spaces (tasks), address space areas (paging, TLB, ASIDs)

– Time management
● Alarms, timeouts, delays

– Synchronization
● Preemption control, mechanisms, primitives

– Syscalls
● Safety / security boundary between kernel space / user space

– Device drivers
– Utilities

● Run-time configuration, loaders, observability, debugging, logging

45

Kernel InterfacesKernel Interfaces

● Additional microkernel
subsystems
– Capabilities

● Factories
– User space delegation

● Platform control,
exceptions, user space
device drivers

● Additional monolithic
kernel subsystems
– File systems
– Network stacks
– Power management
– Cryptography

46

System CallsSystem Calls
● Kernel entry from user space

– Usually via a dedicated SYSCALL instruction
● But other tricks exist (synchronous interrupt, exception, etc.)
● Might encode the syscall number in the instruction

– Similar to a method call of a virtual method table
● The “object” is logically either the entire kernel or a capability
● The “method table” is either a syscall table, a switch or a cascade (of either or both)

– Basic arguments universally passed in GPRs
● Least trouble with validation
● Might not align perfectly with ABI

– Extended arguments usually passed as pointers to user memory
● Need thorough validation
● Time-of-check to time-of-use races

47

System Calls MultiplexingSystem Calls Multiplexing

● None
– Each syscall is a fixed method (more-or-less)

● Capabilities
– Each capability type provide a set of methods (usually fixed)

● ioctls
– Each object (e.g. file descriptor, netlink socket) provides an

arbitrary set of methods or messages

48

Kernel Object NamingKernel Object Naming
● Capabilities

– Also file descriptors, sockets, handles, virtual addresses, etc.
– Local identifiers of objects
– Implicitly follow the “share nothing” principle

● No extra effort for partitioning required

● Global resources
– Tasks (processes), threads, users, groups, file names, keys, network devices, network addresses,

physical addresses, etc.
– Explicit partitioning required

● Namespaces, containers, zones, etc.
– Class of global resources that group and isolate global resources
– Non-trivial to achieve a truly “share nothing” state

49

““Everything Is a File”Everything Is a File”
● Original UNIX paradigm

– N.B.: Mixes two aspects (naming, handling) together
– Resources uniformly identified as file names

● Special files for global “non-files” (e.g. named pipes, device nodes)
● Internal file systems for local “non-files” (e.g. anonymous pipes, sockets)
● Special (synthetic) file systems for exposing run-time data (e.g. /proc, /sys)
● Despite the effort, there were always exceptions (processes, threads, semaphores, etc.)

– Resources handled uniformly
● Basic operations (create, destroy, etc.) and input/output stream of bytes
● Despite the effort, there were always major exceptions

– Special operations for different types of objects
– ioctls as a completely unconstrained API

50

““Everything Is a File”Everything Is a File”

Source: DALL·E 3 via ChatGPT 4

51

Everything Is ...Everything Is ...
● … a file (for real)

– Plan 9
● No ioctls, just a fixed set of operations (9P protocol)

– Version, Attach, Auth, Walk, Open, New, Clunk, Delete, Stat, Read, Write, Flush
● Everything marshalled as streams of bytes

● … an object
– Windows

● Pragmatic approach without sticking to a paradigm with exceptions
– “Normal APIs” instead of magic ioctls or magic strings
– Often some degree of uniformity might be a benefit (e.g. for enumeration)

● … a capability
– Actual local uniform naming (but not uniform handling)

● … a memory area
– All resources represented as (demand mapped) virtual memory

52

Device Drivers InterfaceDevice Drivers Interface
● Device drivers are portable (to a degree)

– Platform specifics can be abstracted
● UART driver accesses hardware registers (I/O ports or MMIO)
● PCI device driver accesses PCI configuration space
● USB device driver uses USB controller endpoints

– Host / device endianess, memory models, etc.
– Class drivers

● Supporting many individual devices via a vendor-neutral interface
– USB HID, Mass Storage, UVC, etc.

– Tree of device driver instances
● Follows the hierarchy of devices

– Example: Root driver, platform driver, interrupt controller driver, DMA controller driver, PCI driver, PCI bridge driver, USB
controller driver, USB class driver, custom USB endpoint driver

● Managing and delegating resources

53

Device Driver FrameworkDevice Driver Framework
● Implementing common parts of device drivers

– Driver instance life cycle
● Discovery (bus enumeration, hot plug/unplug), probing, attaching, detaching

– Resource delegation
● I/O port ranges, MMIO ranges, interrupts, DMA areas, power quotas, etc.
● IOMMU programming

– Device soft state management
● Software mirror of hardware state
● Device initialization, device / bus reset, device surprise hot removal

– Device naming
● Enumeration
● Persistent instance identification

– Level-triggered interrupts vs. user space drivers

54

Classical IPCClassical IPC
● POSIX signals

– Since UNIX Version 4
– Asynchronous notification sent to a process (thread)

● Similar to level-triggered interrupts (including masking)
● Sender uses the kill(2) syscall

– Run-time exceptions and state changes also cause signals (SIGFPE, SIGSEGV; SIGPIPE, SIGINT, SIGSTOP/SIGTSTP,
SIGCONT, SIGTRAP)

● Receiver thread is interrupted and a signal handler is executed (installed using signal(2) or sigaction(2))
– Race conditions due to nested signals
– Calling non-reentrant functions (e.g. malloc(), printf()) is undefined behavior
– Interruption of some syscalls

● Real-time signals
– Queued, guaranteed sending order

55

Classical IPCClassical IPC
● Anonymous pipes
● Named pipes

– Persistent uni-directional pipes
● Same API as files (anonymous pipes)
● Pipe identification: File system i-node (bound to a directory entry)
● No identification of senders on the receiver end

– Writes of data larger than PIPE_BUF bytes can be interleaved

– Windows named pipes
● Dedicated namespace (Named Pipe File System \\.\pipe\)
● Non-persistent (removed when all clients close the pipe)
● Anonymous pipes are named pipes with random names

56

Classical IPCClassical IPC

● UNIX domain sockets
– Reliable bi-directional stream of bytes (akin to TCP), or …
– Unordered unreliable datagrams (akin to UDP), or …
– Reliable ordered stream of datagrams between local processes

● Same API as BSD sockets
● Socket identification: File system i-node (bound to a directory entry or to

an abstract socket namespace)
● Sending file descriptors (sendmsg(), rescvmsg()) as ancillary data

– Rudimentary capabilities

57

Classical IPCClassical IPC
● Software shared memory

– POSIX Shared Memory, System V Shared Memory
● Persistent shared memory objects in dedicated namespace

– In Linux, objects created as tmpfs files (usually /dev/shm)
● shm_open(3), mmap(2), munmap(2), shm_unlink(3)
● shmget(2), shmat(2), shmdt(2)

– Memory mapped files
● Shared memory backed by a file (or anonymous memory)
● mmap(2), munmap(2)
● memfd_create(2)

– Removed when no longer referenced
– File sealing (preventing the other party from changing the configuration)

58

Classical IPCClassical IPC
● Message passing

– Sending: synchronous / asynchronous, blocking / non-blocking
– Receiving: synchronous / asynchronous, blocking / non-blocking
– Addressing: symmetrical / asymmetrical / indirect
– Transmitting: uniplex / duplex
– POSIX message queues, System V Message Passing

● Indirect addressing using a message queue (key for msgget(2), i-node for mq_open(3))
● msgsnd(2), mq_send(3) asynchronous non-blocking (unless the queue is full)
● msgrcv(2), mq_receive(3) synchronous blocking by default

– Windows Messages
● Symmetrical addressing using window/thread handles
● SendMessage() synchronous non-blocking, SendMessageCallback(), SendNotifyMessage(), PostMessage() asynchronous

non-blocking
● GetMessage() synchronous blocking, PeekMessage() synchronous non-blocking

59

Mach IPCMach IPC
● Prototypical microkernel asynchronous message passing

– Ports
● Receive end-points and associated message queues

– Port rights
● Client capabilities for accessing a port (send, receive, send-once)

– Only a single server can have a receive right
● Each task has an initial set of port rights

– Communicating with the kernel, etc.

– Tagged message structure
● Kernel enforces type correctness
● Port rights can be also passed
● Timeouts

60

Mach IPCMach IPC
● The origin of the IPC overhead anxiety

– IPC overhead of 50 % compared to monolithic UNIX
● With a single UNIX server
● Root causes

– Complex non-optimized kernel-side code
● Tagged data type evaluation, handling of timeouts, etc.
● Dynamic data structures

● But the implementation only uses linked lists
● Excessive cache footprint

– Asynchronicity rarely used for the given workloads
● User space tasks (mostly ported from UNIX) use synchronous communication and blocking I/O

● Nowadays, the anxiety is unfounded
– Bershad has argued 31 years ago that the IPC overhead is increasingly irrelevant [1]

● Real-world performance of computer systems is dominated by other factors
– Liedtke has shown 28 years ago that the IPC overhead is negligeable assuming proper microkernel design [2]

61

The Era of Synchronous IPCThe Era of Synchronous IPC
● L3 (1988), L4 (1993) by Jochen Liedtke

– IPC overhead of 3 % compared to monolithic UNIX
● With a single UNIX server
● Single IPC call overhead comparable to single syscall overhead in UNIX (approx. 20 times faster

than on Mach)
– Synchronous IPC

● Explicit client/server rendez-vous and thread migration
– No need for full context switch (address space switch is sufficient)
– No buffering, no scheduling, data passed mostly directly in registers

● Highly target-optimized implementation
– Small working set, cache-friendly code
– No complex algorithms or dynamic data structures

62

The Era of Synchronous IPCThe Era of Synchronous IPC
● L3 (1988), L4 (1993) by Jochen Liedtke

– Drawbacks
● Non-portable microkernel (by design)

– Poor code readability and maintainability
– Preoccupation with single-threaded performance conflicts with other goals (e.g.

throughput)
● Design issues of synchronous IPC

– Unresponsive server blocks the client indefinitely
● Originally solved using timeouts (in hindsight not a great solution)

– Asynchronous communication on top of synchronous IPC
● Abstraction inversion anti-pattern (i.e. requires multithreading)

– Scalability suffers on modern massively parallel architectures

63

The Return of Asynchronous IPCThe Return of Asynchronous IPC
● The best of both worlds

– Synchronous IPC still superior in specific use cases
● Synchronous blocking semantics, single-core communication

– Asynchronous IPC reasonably simple, cache-friendly with fast-path kernel code
● Bounded kernel buffers (additional buffering possible on the client user space side)
● Intelligent bookkeeping data structures (hash tables, trees)
● Simple IPC message structure (only integer payload that fits into registers)

– Additional semantics for memory copying and memory sharing possible
● Possibility to build rich abstractions in user space

– Actors, agents, continuations, futures, promises

64

HelenOS IPCHelenOS IPC
● Basic design

– Asynchronous message passing over uni-directional connections
● 6-integer payload (1st integer interpreted as interface/method ID)
● Bounded kernel buffers
● Every message paired with a reply (6-integer return value)
● New connections established via existing connections (capabilities)

– Security policy delegated to the connection brokers
– Every client initially connected to the Naming Service (default broker)

● Message forwarding (recursive)
● Kernel events and hardware interrupts converted to IPC messages (no reply)

65

HelenOS IPCHelenOS IPC
● Kernel API

– Global method IDs with special semantics
● IPC_M_CONNECTION_CLONE (clone a connection capability from the client to the server)
● IPC_M_CONNECT_TO_ME (establish a callback connection)
● IPC_M_CONNECT_ME_TO (establish a new connection)

– When forwarded, the connection is potentially established to the next receiver
● Broker (Naming Service, Location Service, Device Manager, VFS, etc.) connects the client to the target server

● IPC_M_SHARE_IN / IPC_M_SHARE_OUT (receive/send a shared virtual address space area)
● IPC_M_DATA_READ / IPC_M_DATA_WRITE (receive/send bulk data)
● IPC_M_STATE_CHANGE_AUTHORIZE (update a server state on behalf of a different client)

– Three-way handshake
● IPC_M_PHONE_HUNGUP (connection close)

66

HelenOS IPCHelenOS IPC

● User space API
– Async framework

● Goal: Writing single-threaded sequential client code that makes effective
use of the asynchronous IPC

– User space-scheduled cooperative threads (fibrils)
● Efficient parallelism (preempted only when blocking on waiting for IPC replies)

● Abstracting the low-level IPC connections into sessions
– Each session can have a different threading model

● Abstracting the atomic low-level IPC messages into logical exchanges
– Easily implementing complex communication protocols

67

HelenOS IPCHelenOS IPC
async_exch_t *ns_exch = async_exchange_begin(session_ns);

async_sess_t *sess =
async_connect_me_to_iface(ns_exch, INTERFACE_VFS, SERVICE_VFS, 0);

async_exchange_end(ns_exch);

async_exch_t *exch = async_exchange_begin(sess);

ipc_call_t answer;
aid_t req =

async_send_3(exch, VFS_IN_OPEN, lflags, oflags, 0, &answer);

async_data_write_start(exch, path, path_size);

async_exchange_end(exch);

// Do some other useful work in the meantime

sysarg_t rc;
async_wait_for(req, &rc);

if (rc == EOK)
fd = (int) IPC_GET_ARG1(answer);

68

ReferencesReferences
[1] Bershad B. N.: The Increasing Irrelevance of IPC Performance for Micro-Kernel-Based Operating

Systems, in Proceedings of the Workshop on Micro-Kernels and Other Kernel Architectures, USENIX,
1992, https://dl.acm.org/doi/10.5555/646405.692226

[2] Liedtke J.: On Micro-Kernel Construction, in Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP), ACM, 1995, https://dl.acm.org/doi/10.1145/224056.224075

https://dl.acm.org/doi/10.5555/646405.692226
https://dl.acm.org/doi/10.1145/224056.224075

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

