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Effective VirtualizationEffective Virtualization
● Popek/Goldberg conditions on instruction set effective virtualization

– Assumes instruction sets with a privileged (kernel) and a non-privileged (user) mode
– Definitions

● Virtualizable instructions
– Instructions that always trap when executed in non-privileged mode

● State-altering instructions
● State-affected instructions

– Instruction set is virtualizable if every state-altering and state-affected instruction is 
also a virtualizable instruction

● Example: Classical IA-32 contains several critical instructions that do not meet this condition
– SGDT, SIDT, SLDT, POPF, PUSHF, POP, PUSH, MOV, CALL, JMP, INT, RET
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Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Non-transparent virtualization

– Partitioning
● “Shared kernel virtualization”, “namespaces”, “containers”, “zones”, etc.

– Logical separation of user space tasks into isolated groups
– No true VM abstractions

● Traditional OS abstractions with additional layer of resource management and object visibility

– Paravirtualization
● Voluntary cooperation between VM and hypervisor

– VM replaces state-altering instructions with hypercalls and adapts the output of state-
affected instructions

– Also usable as a performance improvement (e.g. I/O) for transparent virtualization



7

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization

● Transparent virtualization
– Emulation
– Dynamic translation

● More efficient emulation that tries to separate critical and non-critical 
instructions

– Whenever a code page is altered, critical instructions are replaced by explicit 
traps

– VM usually provided with a read-only shadow copy to maintain integrity
– Complicated by the fact that many non-effectively virtualizable instruction 

sets also do not provide other efficient features (e.g. non-executable pages)
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Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Transparent virtualization

– Special hardware privileged mode
● Turning critical instructions into virtualizable instructions
● Usually somewhat limited in scope (e.g. V86 on IA-32)

– Hyper-privileged (hypervisor) mode
● Mode that affects the behavior of the privileged mode (which is, in essence, not fully 

privileged)
– Usually associated with an analogous set of control registers as the privileged mode
– Instructions that might be critical w.r.t. non-privileged mode are virtualizable using the 

hyper-privileged mode
● PL2 (ARM), EL2/EL3 (ARM64), M-mode (RISC-V)
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Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Transparent virtualization

– Orthogonal virtualization modes
● Separate control registers (control structures) and control instructions

– Nested virtualization possible if the control instructions are self non-critical
– No traditional traps, but VM exits (and VM entries)
– Intel VT-x (VMX), AMD AMD-V (SVM)

● Root mode (hypervisor)
● Non-root mode (guest VM)

– Hypervisor Extension (RISC-V)
● HS-mode (hypervisor-extended supervisor mode)
● VU-mode (virtual user mode), VS-mode (virtual supervisor mode)
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Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Side note: x86 CPU protection levels (rings)

– Compared to most other ISAs (except VAX, IA-64, MIPS*), there are 4 privilege levels
● CPL 0 (kernel mode), CPL 1, CPL 2, CPL 3 (user mode)
● Affects segmentation and I/O instructions, not paging (CPL 1 and 2 are privileged with respect to paging)

– Legacy VMware and VirtualBox using dynamic translation executed the guest OS code in CPL 1
● Harder to (accidentally) break the dynamic translation mechanism (via interrupt handling, etc.)
● Easier to keep the actual user code in CPL 3
● Entering CPL 1 instead of CPL 0 (and using different segments) is not transparent

– Examining the CPL is a critical operation

– Xen executed paravirtualized guests in CPL 1
– OS/2 and VMS executed device drivers in CPL 2

● Isolation both from the kernel and from the user space
● Potentially challenging for virtualization
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Operating System Virtualization AbstractionOperating System Virtualization Abstraction
● vCPU (virtual CPU)

– Logical extension of the (user) thread abstraction
● Entity that keeps the computational context state
● Besides the usual user context, it also tracks the privileged context

– Paravirtualization
● User context: Guest user thread running inside the VM

● Exceptions, page faults, IRQs, IPC, etc., switch to the privileged context
● Privileged context: Guest paravirtualized kernel (running in a different address space) that provides the 

environment for the guest user threads in the VM (including thread scheduling, etc.)
– Transparent virtualization

● User context: Virtual machine monitor (VMM, running in a different address space)
● Privileged context: Context of the entire guest VM

● Regular exceptions (including standard page faults) handled internally
● IRQs, some state-altering instructions and other conditions switch to the user context (VM exit)
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Intel VT-x (VMX)Intel VT-x (VMX)
● Crucial instructions

– VMXON / VMXOFF
● Enter / exit root mode
● 4 KiB physical location for virtualization bookkeeping (opaque)

– VMPTRLD
● Load a Virtual-Machine Control Structure (VMCS) as current

– 4 KiB physical location that stores the vCPU privileged context
● Mostly opaque, fields accessed strictly via the VMREAD / VMWRITE instructions
● Control fields (affecting the features / behavior of the virtualization, events that trigger VM exits, nested paging configuration, etc.)
● Guest fields (context of the guest VM, i.e. privileged context of the vCPU)

● RSP, RIP, RFLAGS, selectors, control registers, MSRs, interrupt/activity state
● Does not store most of the GPRs

● Host fields (context of the VMM, i.e. user context of the vCPU)
● Analogy of the guests fields (for efficiently switching to the VMM)

● Read-only fields (information about the VM exit)
● VM exit reason, interruption (IDT vectoring) state, guest-physical address of a nested page fault, I/O instruction information, etc.



Intel VT-x (VMX)Intel VT-x (VMX)
● Crucial instructions

– VMLAUNCH / VMRESUME
● Launch / resume the current VMCS (i.e. execute a VM entry)

– If there is no error on the VM entry, the instruction eventually transfers to the host state of the VMCS when a VM 
exit occurs

– INVEPT / INVVPID
● Invalidate the TLB for the nested paging based on the Extended Page Table root pointer or on the vCPU ID

– VMCALL
● Hypercall to the VMM

– VMFUNC
● Possible hardware acceleration of certain VMM operations (without a VM exit)

– Currently only the Extended Page Table root pointer switching (among preset list of possible values)
– Can be used to implement efficient hardware-assisted address space switching for IPC [1]



Intel VT-x (VMX)Intel VT-x (VMX)
● Crucial VM exits

– Exception or NMI
– External interrupt
– Triple fault / INIT signal (i.e. reset) / start-up IPI
– SMI events
– Interrupt / NMI window (VM is in a state where it can handle the event)
– Task switch, control register access, debug register access, CPUID, RDMSR, WRMSR, GETSEC, HLT, INVD, INVLPG, MWAIT, MONITOR, PAUSE, 

XSETBV, XSAVES, XRSTORS, PCONFIG, etc.
– I/O instruction
– APIC access
– EPT violation
– VMCALL (i.e. hypercall)
– VMX instruction (i.e. nested virtualization)
– Preemption timer
– Page-modification log full
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