
 

Advanced Operating Systems
Summer Semester 2023/2024

Martin Děcký



 
Virtualization
4



3

Hypervisor (Type 1)Hypervisor (Type 1)

hardware

hyper-privileged mode

privileged mode

hypervisormemory
mgmt scheduler comm

operating system

kernel

privileged mode

unprivileged mode

app app

app app

operating system

kernel

privileged mode

unprivileged mode

app app

app app

operating system

kernel

privileged mode

unprivileged mode

app app

app app



4

Hypervisor (Type 1) with UnikernelsHypervisor (Type 1) with Unikernels

hardware

hyper-privileged mode

privileged mode

hypervisormemory
mgmt scheduler comm

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component



5

Effective VirtualizationEffective Virtualization
● Popek/Goldberg conditions on instruction set effective virtualization

– Assumes instruction sets with a privileged (kernel) and a non-privileged (user) mode
– Definitions

● Virtualizable instructions
– Instructions that always trap when executed in non-privileged mode

● State-altering instructions
● State-affected instructions

– Instruction set is virtualizable if every state-altering and state-affected instruction is 
also a virtualizable instruction

● Example: Classical IA-32 contains several critical instructions that do not meet this condition
– SGDT, SIDT, SLDT, POPF, PUSHF, POP, PUSH, MOV, CALL, JMP, INT, RET



6

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Non-transparent virtualization

– Partitioning
● “Shared kernel virtualization”, “namespaces”, “containers”, “zones”, etc.

– Logical separation of user space tasks into isolated groups
– No true VM abstractions

● Traditional OS abstractions with additional layer of resource management and object visibility

– Paravirtualization
● Voluntary cooperation between VM and hypervisor

– VM replaces state-altering instructions with hypercalls and adapts the output of state-
affected instructions

– Also usable as a performance improvement (e.g. I/O) for transparent virtualization



7

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization

● Transparent virtualization
– Emulation
– Dynamic translation

● More efficient emulation that tries to separate critical and non-critical 
instructions

– Whenever a code page is altered, critical instructions are replaced by explicit 
traps

– VM usually provided with a read-only shadow copy to maintain integrity
– Complicated by the fact that many non-effectively virtualizable instruction 

sets also do not provide other efficient features (e.g. non-executable pages)



8

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Transparent virtualization

– Special hardware privileged mode
● Turning critical instructions into virtualizable instructions
● Usually somewhat limited in scope (e.g. V86 on IA-32)

– Hyper-privileged (hypervisor) mode
● Mode that affects the behavior of the privileged mode (which is, in essence, not fully 

privileged)
– Usually associated with an analogous set of control registers as the privileged mode
– Instructions that might be critical w.r.t. non-privileged mode are virtualizable using the 

hyper-privileged mode
● PL2 (ARM), EL2/EL3 (ARM64), M-mode (RISC-V)



9

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Transparent virtualization

– Orthogonal virtualization modes
● Separate control registers (control structures) and control instructions

– Nested virtualization possible if the control instructions are self non-critical
– No traditional traps, but VM exits (and VM entries)
– Intel VT-x (VMX), AMD AMD-V (SVM)

● Root mode (hypervisor)
● Non-root mode (guest VM)

– Hypervisor Extension (RISC-V)
● HS-mode (hypervisor-extended supervisor mode)
● VU-mode (virtual user mode), VS-mode (virtual supervisor mode)



10

Transparent VirtualizationTransparent Virtualization

privileged mode

unprivileged 
mode

hyper-privileged 
mode

unprivileged 
mode

privileged mode

privileged mode

unprivileged 
mode

root mode non-root mode

● Hyper-privileged mode ● Orthogonal modes

trap return

exit

entry



11

Virtualization without Effective VirtualizationVirtualization without Effective Virtualization
● Side note: x86 CPU protection levels (rings)

– Compared to most other ISAs (except VAX, IA-64, MIPS*), there are 4 privilege levels
● CPL 0 (kernel mode), CPL 1, CPL 2, CPL 3 (user mode)
● Affects segmentation and I/O instructions, not paging (CPL 1 and 2 are privileged with respect to paging)

– Legacy VMware and VirtualBox using dynamic translation executed the guest OS code in CPL 1
● Harder to (accidentally) break the dynamic translation mechanism (via interrupt handling, etc.)
● Easier to keep the actual user code in CPL 3
● Entering CPL 1 instead of CPL 0 (and using different segments) is not transparent

– Examining the CPL is a critical operation

– Xen executed paravirtualized guests in CPL 1
– OS/2 and VMS executed device drivers in CPL 2

● Isolation both from the kernel and from the user space
● Potentially challenging for virtualization



12

Operating System Virtualization AbstractionOperating System Virtualization Abstraction
● vCPU (virtual CPU)

– Logical extension of the (user) thread abstraction
● Entity that keeps the computational context state
● Besides the usual user context, it also tracks the privileged context

– Paravirtualization
● User context: Guest user thread running inside the VM

● Exceptions, page faults, IRQs, IPC, etc., switch to the privileged context
● Privileged context: Guest paravirtualized kernel (running in a different address space) that provides the 

environment for the guest user threads in the VM (including thread scheduling, etc.)
– Transparent virtualization

● User context: Virtual machine monitor (VMM, running in a different address space)
● Privileged context: Context of the entire guest VM

● Regular exceptions (including standard page faults) handled internally
● IRQs, some state-altering instructions and other conditions switch to the user context (VM exit)



13

vCPUvCPU

● Paravirtualization ● Transparent virtualization

user context

guest user 
thread

privileged 
context

guest user task

guest 
paravirtualized 
kernel thread

guest paravirtualized 
kernel task

vCPU user context

standard user 
thread

extended 
privileged 

context

virtual machine 
monitor task

virtual machine

vCPU



Intel VT-x (VMX)Intel VT-x (VMX)
● Crucial instructions

– VMXON / VMXOFF
● Enter / exit root mode
● 4 KiB physical location for virtualization bookkeeping (opaque)

– VMPTRLD
● Load a Virtual-Machine Control Structure (VMCS) as current

– 4 KiB physical location that stores the vCPU privileged context
● Mostly opaque, fields accessed strictly via the VMREAD / VMWRITE instructions
● Control fields (affecting the features / behavior of the virtualization, events that trigger VM exits, nested paging configuration, etc.)
● Guest fields (context of the guest VM, i.e. privileged context of the vCPU)

● RSP, RIP, RFLAGS, selectors, control registers, MSRs, interrupt/activity state
● Does not store most of the GPRs

● Host fields (context of the VMM, i.e. user context of the vCPU)
● Analogy of the guests fields (for efficiently switching to the VMM)

● Read-only fields (information about the VM exit)
● VM exit reason, interruption (IDT vectoring) state, guest-physical address of a nested page fault, I/O instruction information, etc.



Intel VT-x (VMX)Intel VT-x (VMX)
● Crucial instructions

– VMLAUNCH / VMRESUME
● Launch / resume the current VMCS (i.e. execute a VM entry)

– If there is no error on the VM entry, the instruction eventually transfers to the host state of the VMCS when a VM 
exit occurs

– INVEPT / INVVPID
● Invalidate the TLB for the nested paging based on the Extended Page Table root pointer or on the vCPU ID

– VMCALL
● Hypercall to the VMM

– VMFUNC
● Possible hardware acceleration of certain VMM operations (without a VM exit)

– Currently only the Extended Page Table root pointer switching (among preset list of possible values)
– Can be used to implement efficient hardware-assisted address space switching for IPC [1]



Intel VT-x (VMX)Intel VT-x (VMX)
● Crucial VM exits

– Exception or NMI
– External interrupt
– Triple fault / INIT signal (i.e. reset) / start-up IPI
– SMI events
– Interrupt / NMI window (VM is in a state where it can handle the event)
– Task switch, control register access, debug register access, CPUID, RDMSR, WRMSR, GETSEC, HLT, INVD, INVLPG, MWAIT, MONITOR, PAUSE, 

XSETBV, XSAVES, XRSTORS, PCONFIG, etc.
– I/O instruction
– APIC access
– EPT violation
– VMCALL (i.e. hypercall)
– VMX instruction (i.e. nested virtualization)
– Preemption timer
– Page-modification log full



17

ReferencesReferences
[1] Mi Z., Li D., Yang Z., Wang X., Chen H.: SkyBridge: Fast and Secure Inter-Process Communication for 

Microkernels, in Proceedings of the 14th EuroSys Conference, ACM, 2019, 
https://dl.acm.org/doi/10.1145/3302424.3303946

https://dl.acm.org/doi/10.1145/3302424.3303946


 

Thank you!
Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

