Summer Semester 2023/2024

Martin Décky

<

File Systems

Classification of File Systems

Traditional

Examples: ext4, XFS, NTFS, UFS (latest variants), BFS, JFS2, etc.
Universal set of features

Distinction between directory entries and i-nodes

On-disk layout affected by rotational media and traditional partitioning
Typically use of somewhat sophisticated data structures

Typically larger constant overhead
* Not usable for small media
Reliability via journaling of changes

* Soft updates as an alternative

Classification of File Systems

Simpler traditional

Examples: FAT, exFAT, etc.

* Historical examples (with some advanced features): HPFS, HFS

Somewhat limited set of features

* Typically missing permissions, ownership and other metadata, limited directory entry types,
limited file names, limited file sizes, size of some data structures fixed, etc.

Frequently no distinction between directory entries and i-nodes
On-disk layout could be affected by slow / removable rotational media
Typically not so sophisticated data structures

Limited reliability

Classification of File Systems

Optical
- Examples: ISO 9660, UDF
- Compact, continuous structures to minimize seeking
* Path tables, directories, files
- Additional sessions referencing previous sessions
* Keeping / adding / removing files

* Wear leveling and block remapping for rewritable media

- As opposed to hardware abstractions (e.g. Mount Rainier)

- Hybrid media

Classification of File Systems

Log-structured

Examples: JFFS2, NILFS2, YAFFS, UBIFS, F2FS

Idea: Instead of keeping a journal for consistency, why not use the journal as the
data storage?

Suits well zoned media (flash, SMR)

* Block subdivision and GC more efficient than basic appending
Stale data can be accessed as snapshots (versions)
Inherently always consistent

Initial scan optimizations (persistent indexes)

Classification of File Systems

Copy-on-write

Examples: ZFS, btrfs, HAMMER2, APFS, ReFS

Idea: Flexible on-disk layout, but no overwrites
Stale data can be accessed as snapshots (versions)
Multiple mountable roots

Other advanced features (not strictly specific to COW)

* Data checksums (separately stored, Merkle tree), data redundancy, deduplication, integration with
logical volume management, hierarchical caching, wandering intent logs, replication

Inherently always consistent

Initial scan issues avoided, but GC still needed (also serves as defragmentation)

Classification of File Systems

Read-only

Examples: SquashFS, cramfs, EROFS, AXFS

Efficient storage of seed images (boot images, container
images, thin provisioning, etc.)

* Often coupled with union mounts for read/write support
Low overhead, no fragmentation, compression

Easy caching, execute-in-place (adaptive compression)

Classification of File Systems

Shared-disk

Examples: CXFS, GPFS, GFS2, OCFS, HAMMER2

Support for underlying block modifications from independent
sources

* Via iSCSI, ATA over Ethernet, Fibre Channel, InfiniBand, NVMe over
fabric

In between reqgular file systems and network file systems

Distributed lock manager vs. metadata broker

S.1

File System Curiosities

Traditional File Systems with Bonuses

AdvFS, NSS

- Fairly traditional file systems, but supporting multiple block
devices

HFS+

- Hard links to directories

RaiserFS

— Tail packing (sub-allocation of blocks)

Traditional File Systems with Bonuses

NTFS

- Reparse points, file system filters
- Caching i-node size in directory entry (non-consistent among hard links)
- Hard links for 8.3 file names

- Per-directory case sensitivity
* Case insensitivity is not trivial [1][2]
— Transactional NTFS

* Integrated with Kernel Transaction Manager

* Transaction-Safe FAT

Traditional File Systems with Bonuses

XFS

— Allocation groups (concurrency)

— Multiple devices, COW, snapshots, deduplication, striping
* Controlled by Stratis

extd4
— Journal checksums
StegFS

- Steganographic extension to ext2

* Undetectable, hidden layer of files on a regular file system

Less Traditional File Systems

btrfs

Integrated support for union mounting (read-only seeding)
Linear Tape File System (LTFS)

NOVA
Targeting byte-addressable persistent memory (NVRAM)

Log structured for metadata per i-node (concurrency)
* Logis append-only, but non-continuous (linked list)
* Replication and checksums

~— Data blocks managed as copy-on-write

~ Global journaling for reliability of non-atomic operations

SPECIFYING FILE PATHS

L |

Source: DALL-E 3 via ChatGPT 4

Other File Systems Remarks

Resource forks, extended attributes

- Multiple streams associated with a single file

Forward and backward compatibility
- Feature sets, feature bitmaps

- Allowed and required features
File system semantics are not trivial [3]
Path lengths, valid path characters

Path separator

- The history of slash / backslash in complicated [4][5]

References

[1] https://lwn.net/Articles/784041/

[2] https://www.youtube.com/watch?v=yVIEZKiMGJU

[3] https://danluu.com/deconstruct-files/

[4] https://www.0s2museum.com/wp/why-does-windows-really-use-backslash-as-path-separator/

[5] https://learn.microsoft.com/en-us/archive/blogs/larryosterman/why-is-the-dos-path-character

17

https://lwn.net/Articles/784041/
https://www.youtube.com/watch?v=yVlEZKiMGJU
https://danluu.com/deconstruct-files/
https://www.os2museum.com/wp/why-does-windows-really-use-backslash-as-path-separator/
https://learn.microsoft.com/en-us/archive/blogs/larryosterman/why-is-the-dos-path-character

Thank youl!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

