### **Microkernel Architecture and Security**

Advanced Operating Systems | Lea Schmierer

## Agenda

- 1. Introduction
- 2. Microkernel Architecture
- 3. Security Aspects of Operating Systems
- 4. Microkernel Architecture and Security
- 5. Security Focused Operating Systems
- 6. Some CVEs
- 7. Summary

# Introduction



### **Exploring the Relationship between Microkernel Architecture and Security**

Goal:

- Overview of fundamental security guarantees
- Discuss additional security considerations

## Kernel

- Core component of an OS
- Manages system resources
- Bridges hardware and software interaction
- Kernel design categories:
  - Monolithic kernels
  - Microkernels
  - Hybrid kernels



Source: https://medium.com/



**Source**: Martin Děcký, Microkernel-based and Capability-based Operating Systems

## Microkernel Architecture

### **Basic Principles**

Split of mechanism and policy

Componentbased Separation of concerns

Least privilege

#### Modularity

Kernel contains just the basic and fundamental mechanisms System composed of isolated components Each component focuses on a welldefined functionality Components have minimal privileges Replacing component implementations

### Monolithic Kernel vs. Microkernel



**Source**: Martin Děcký, Microkernel-based and Capability-based Operating Systems

### Monolithic Kernel vs. Microkernel

**Monolithic kernel** 

### Microkernel



### Monolithic Kernel vs. Microkernel

| Monolithic kernel                                            | Microkernel                                                              |
|--------------------------------------------------------------|--------------------------------------------------------------------------|
| Same address space                                           | Separate address spaces                                                  |
| Configurability via compile-time options and parametrization | Configurability via different use (policy in user space)                 |
| Modularity via run-time dynamic linking                      | Modularity via extension in user space                                   |
| Tight module coupling                                        | Loose module coupling                                                    |
| OS is easier to implement                                    | OS is more complex to implement                                          |
| TCB is larger in size                                        | TCB is smaller in size                                                   |
| If one component fails, the entire system crashes            | If one component fails, it doesn't affect the working of the microkernel |

# Microkernel OS Types



Source: Martin Děcký, Microkernel-based and Capability-based Operating Systems

# Microkernel OS Types

#### **Single-Server Microkernel OS**

#### **Multiserver Microkernel OS**



## Security Aspects of Operating Systems

## OS Security



= Aims to protect everything within the system = Protects system resources including CPU, memory, disk, programs, and data

### Importance



### Who are the Attackers?

For example:

- Hackers driven by the challenge
- Insiders seeking revenge or gain informal benefits
- Criminals seeking financial gain
- Terrorist groups or nation states trying to influence national policy
- Agents seeking information for economic, political purposes

### What are the Vulnerabilities?

Security vulnerabilities that affect the operating system:

- Automatically running active content
- Open ports
- Incorrect configuration
- Backdoor
- Unencrypted communication
- Limited resources
- Vulnerabilities in software

## Security Goals

| Authentication       | Verifying the identity of users or systems       |
|----------------------|--------------------------------------------------|
| Authorization        | Granting or denying access to resources          |
| Data confidentiality | Ensuring that sensitive information is protected |
| Integrity            | Ensuring the accuracy and reliability            |
| Availability         | Ensuring consistently accessibility              |

How can this be implemented?

### How to ensure Operating System Security?





Additional security measures

# **Built-in Security**

#### Hardware access control:

- Operating system regulates hardware access for processes
- Prevents one process from compromising another's security

### **Control of operating system services:**

- Monitoring and control of services
- For example: file systems, memory management, and interprocess communication
- Control over system calls:
  - Processes access system services through system calls
  - OS monitors system calls, determining process authorization

### **Additional Security Measures**

Further security improvement by:

- Configuring security settings
- Regular updates and patches
- Installing security software
- Security auditing and monitoring
- Supply chain management
- User training and awareness

## Microkernel Architecture and Security

### Motivation

"Operating-system structure has a strong effect on security. 96% of critical Linux exploits would not reach critical severity in a microkernelbased system, 57% would be reduced to low severity."

"From the security point of view, the monolithic OS design is flawed."

### Security Aspects



### Additional Security Measures





### seL4 Microkernel

Secure embedded L4:

- Provides security guarantees at OS and application levels
- Only the kernel operates in privileged mode
- Focus on formal verification

Basis:

- For various OS and runtime environments
- For example: Genode OS Framework



Source: http://www.microkernel.info/



- Tool kit for building operating systems
- Open-ended framework
- Microkernel architecture

#### **Integration of seL4 in Genode:**

- Genode provides a platform on which various microkernels can be run
  - Including seL4
- Using the security features and formal verification of seL4
- Retaining flexibility and modularity of Genode framework



Genode can be operated on various microkernels

For example:



# More Operating Systems



Source: http://www.microkernel.info/

### Dresden, January 16, 2024

"The operating system L4Re Secure Separation Kernel has been approved by the German Federal Office for Information Security (BSI) for the processing of classified information up to classification level German GEHEIM"



Source: https://www.kernkonzept.com

## Security Focused Operating Systems

### Secure OS's

Two types of secure OS's:

- Security-focused OS
  - Implements measures like sandboxing, compartmentalization, and cryptographic isolation
  - Examples: Qubes OS
- Security-evaluated OS
  - Certified by security-auditing organizations
  - Examples: SUSE Linux, Windows 10 Enterprise

### Qubes OS

- Free and open-source operating system
- Based on Xen Hypervisor
- Uses virtual machines to run applications in separate environments
- Rely on the isolation for protection
- Designed with a **focus on security**:
  - Implements secure components called qubes
  - Efficient isolation of tasks and applications
  - Minimizing the impact of vulnerabilities

## **Qubes OS and Microkernel**

- Qubes OS is not microkernel-based
- BUT...

QubesOS/qubes-issues

### #3894 Use verified L4 kernel instead of Xen



 $\square$ 

🖓 24 comments



**Source**: https://github.com

# Some CVEs

### CVE-2015-4001

Problem:

- Security vulnerability in the OZWPAN driver
- Error: Integer signedness error  $\rightarrow$  negative result from subtraction
- Threatened the security of Linux systems:
  - Denial of service
  - Execution of arbitrary code with kernel privileges

Mitigation by microkernel:

- Driver runs as a server at user level in a separate address space
- Isolation from the kernel prevents direct access to its memory

### CVE-2014-9803

Problem:

- Security vulnerability on certain Nexus devices
- Error: Incorrect handling of execute-only pages
- Threatened the security of Linux systems:
  - Allowing an application to gain kernel privileges

Mitigation by microkernel + formal verification:

- This operation must occur in kernel mode  $\rightarrow$  possible in microkernel
- Formal verification ensures the correctness of the microkernel's implementation → not possible in formally verified microkernel

### CVE-2015-8961

Problem:

- Security vulnerability in the ext4\_journal\_stop function
- Error: Unauthorized access to a specific error field
- Threatened the security of Linux systems:
  - Full file system disclosure or a kernel crash
  - Posing significant risks to system integrity and data security

Partial mitigation by microkernel architecture:

- File system is implemented as a user-level server
  - No kernel crash, as the file system operates independently
  - Still allow to gain access to files, compromising data confidentiality



# Summary



OS security crucial for OS and its applications



Microkernel architecture can boost security



Security-focused OS's demonstrate robust security through microkernel



Microkernel are not the key for general security





- Microkernel
  - <u>https://learning.oreilly.com/library/view/software-architecture-patterns/9781098134280/ch04.html</u>
  - <u>https://learning.oreilly.com/library/view/operating-system-design/9781439881118/chapter-08.html</u>
  - <u>http://www.microkernel.info/</u>
  - Martin Děcký, Microkernel-based and Capability-based Operating Systems



- OS & Security
  - <u>https://www.techopedia.com/definition/24774/operating-system-security-os-security</u>
  - <u>https://pages.cs.wisc.edu/~remzi/OSTEP/security-intro.pdf</u>
  - <u>https://ics.uci.edu/~goodrich/teach/cs201P/notes/Ch03-OSSec.pdf</u>
  - <u>http://ndl.ethernet.edu.et/bitstream/123456789/87933/8/Chapter%20-</u> %207.pdf
  - <u>https://www.tutorialspoint.com/operating\_system/pdf/os\_security.pdf</u>
  - <u>https://www.researchgate.net/publication/372803341\_Secure\_Operating\_System</u>



- Microkernel & Security
  - <u>https://trustworthy.systems/publications/full\_text/Biggs\_LH\_18.pdf</u>
  - <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9653483</u>
  - <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9900222</u>
  - <u>https://www.researchgate.net/publication/241623590\_Measures\_to\_im</u> prove\_security\_in\_a\_microkernel\_operating\_system
  - https://sel4.systems/
  - <u>https://genode.org/</u>
  - <u>https://l4re.org/</u>



- Security Focused Operating Systems
  - <a href="https://en.wikipedia.org/wiki/Security-focused\_operating\_system">https://en.wikipedia.org/wiki/Security-focused\_operating\_system</a>
  - <u>https://www.stationx.net/secure-operating-systems/</u>
  - <u>https://www.qubes-os.org/</u>
- CVE
  - <u>https://blogs.blackberry.com/en/2020/09/study-confirms-that-</u> microkernel-is-inherently-more-secure
  - <u>https://microkerneldude.org/2018/08/23/microkernels-really-do-improve-security/</u>
  - <u>https://trustworthy.systems/publications/full\_text/Biggs\_LH\_18.pdf</u>