USE

®
We adapt. You succeed.

Linux memory management
(with focus on page allocations/reclaim)

Vlastimil Babka

Linux Kernel Developer, SUSE Labs
vbabka@suse.cz

Advanced Operating Systems 2023/2024

Documentation and other sources

* Documentation/mm
— Still ad-hoc, ongoing but rather glacial effort to systematize and fill the gaps

* Books (of the past and the future)
— Understanding The Linux Virtual Manager (Mel Gorman)
* Very good and systematic coverage but too old — from 2.4 era (with What's new in 2.6 sections)
* Still very useful to understand core design principles
* https://www.kernel.org/doc/gorman/
— The Linux Memory Manager (Lorenzo Stoakes)
* “The target release date is late 2024” and “the book will target Linux 6.0”
* “l have written 1,291 pages of the book, the first draft of which is nearly complete!”
* https://linuxmemory.org/
* LWN - https://lwn.net/
— Many very good articles (not limited to kernel), LSF/MM/BPF conference coverage...

* Various company-branded or personal blog posts

https://www.kernel.org/doc/gorman/
https://linuxmemory.org/
https://lwn.net/

Linux MM - APIs for kernel

* bootmem/memblock allocator — early initialization
* page allocator — page order (2" physically contiguous pages)
* slab allocator — sub page granularity, internal fragmentation management

— SLUB - the remaining implementation — aimed for better scalability at the expense of
more memory, much better debugging capabilities than the original SLAB had

* vmalloc — virtually contiguous memory allocator — via page tables
* mempool allocator — a layer on top of page or slab allocator
— guarantee for a forward progress — mostly for 10 paths
* page cache management for filesystems
* userspace memory handling and accounting — process management
* page table management
— get_user_pages() — virtual - struct page translation
— generic page table walkers

MM - APIs for userspace

* Syscalls to manage memory

— mmap, munmap, mprotect, brk, mlock — POSIX

— madvise — hints from userspace e.g. MADV_DONTNEED, MADV_FREE etc...

— userfaultfd - page fault handling from userspace

— SystemV shared memory — IPC, shmget, shmat, shmdt

— memfd_create —anonymous memory referenced by a file descriptor — for IPC
* Memory backed filesystems

— ramdisk — fixed sized memory backed block device

— ramfs — simple memory backed filesystem

— tmpfs — more advanced memory backed filesystem, support for swapout, ACL, extended attributes
* Memory cgroups controller — more fine grained partitioning of the system memory

— Mostly for user space consumption limiting, kernel allocations are opt-in

— Support for hard limit, soft/low limit, swap configuration, userspace OOM Kkiller
* Access to huge pages (traditionally 2MB, 1GB)

— hugetlbfs — filesystem backed by preallocated huge pages

— THP —transparent huge pages for anonymous private or tmpfs memory

— mTHP - allows sizes with more granularity than page table levels (i.e. between 4kB and 2MB on x86_64)
* NUMA allocation policies

— mbind, set_mempolicy, get_mempolicy

Physical memory representation

* Managed in page size granularity — arch specific, mostly 4kB
* Each order-0 page is represented by struct page

— Higher-order pages typically “compound pages”, first struct page “head”, the rest “tail” with a link to head, the tail pages might be
used to store additional information, e.g. the order is stored in the first tail page

* Heavily packed — 64B on 64bit systems (~1.5% with 4kB pages)
— Unions to distinguish different usage, or distinct types reinterpreting whole struct page (e.g. struct slab)
— Special tricks to save space — set bottom bits in pointers etc...
— Page flags for various page states, including page lock (bit lock)
* Statically allocated during boot/memory hotplug — memmap
— Typically “sparsemem vmemmap” — virtually contiguous, 0xffffea.. on x86_64 (modulo KASLR)
— Pages belong to different NUMA nodes and zones within nodes, node/zone ids are part of page flags word
* Reference counted to control lifetime and allow sharing and ad-hoc access
— get_page(), put_page(), get_page_unless_zero()
— memory is returned to the page allocator when refcount drops to O
* pfn_valid(), pfn_to_page(), page_to_pfn() — physical page frame number to struct page translation
* struct folio - anew type to better abstract both order-0 and compound head page (cannot be a tail page),
layout matches struct page, gradually introduced throughout the kernel

Page allocator

* alloc_pages(gfp_t gfp_mask, unsigned int order) togetastruct page (and the associated
physical memory)
— alloc_pages_node(int nid, ...) toindicate the preferred numa node

* order — size of the allocation will be 2°rder contiguous naturally aligned pages
* gfp_mask — bitmask for the allocation mode
— Restrict to/allow specific zones — __GFP_DMA, __ _GFP_DMA32, __ GFP_HIGHMEM, __GFP_MOVABLE

Define allocation context wrt possibility of doing memory reclaim if free memory not available anymore
e _ GFP_KSWAPD_RECLAIM, _ GFP_DIRECT RECLAIM, _ GFP_IO, _ GFP_FS

— Define allocation context wrt how hard to try succeed vs availability to fallback
* Reserves access: __GFP_HIGH, _ GFP_MEMALLOC, __ GFP_NOMEMALLOC
* Urgency: _ GFP_NORETRY, _ GFP_RETRY_MAYFAIL, _ GFP_NOFAIL
— Page mobility hints to help anti-fragmentation mechanisms
* _ GFP_MOVABLE, _ GFP_RECLAIMABLE
— Standard combinations defined for most typical contexts:
* GFP_KERNEL: __ GFP_RECLAIM | __GFP_IO | __GFP_FS —unmovable allocation, can reclaim both by kswapd and directly

* GFP_HIGHUSER_MOVABLE: GFP_KERNEL | _ GFP_HIGHMEM | __ GFP_MOVABLE — can reclaim, can use highmem and movable zones,
pages are going to be movable

* GFP_NOWAIT: __ GFP_KSWAPD_RECLAIM — unmovable kernel allocation, cannot direct reclaim
* GFP_ATOMIC: _ GFP_KSWAPD_RECLAIM | _ GFP_HIGH - like GFP_NOWATIT but higher priority, can dip into reserves

Page allocator - memory reclaim

* Eventually memory will become (nearly) all used due to caching file contents
(page cache) as well as kernel objects, for faster access

* Each zone has watermarks (scaled to its size) min < low < high, free pages
checked during page allocation
— Below low watermark: wake up kswapd kthread to reclaim up to high watermark
— Below min watermark: the allocation itself has to reclaim up to min watermark

* Reclaim will try to evict a mix of userspace pages and kernel objects
— Anonymous pages (from mmap (MAP_PRIVATE)) must be swapped out first
— Page cache must be written back when dirty, or simply discarded when clean

— Kernel objects: each type of reclaimable objects registers shrinker callbacks with specific
implementation of both tracking of hot/coldness, and actual freeing

* To minimize disk I/O and latency, we want to reclaim cold pages
— Struct pages are linked on a LRU list sorted from most recent (head) to least recent (tail)

LRU list — ideal model

recent stale
1 2 3 4 5 6 7 8 9 10

LRU list — ideal model

recent stale
1 2 3 4 5 6 7 8 9 10

" _

Page 5 accessed

LRU list — ideal model

recent stale
1 2 3 4 5 6 10

recent Page 5 accessed l stale
5 1 2 3 4 6 10

LRU list — ideal model

recent stale
1 2 3 4 5 6 10

recent Page 5 accessed l stale
5 1 2 3 4 6 10
11 Page 11 accessed

LRU list — ideal model

recent stale
1 2 3 4 5 6 10

recent Page 5 accessed 1 stale
5 1 2 3 4 6 10
11 Page 11 accessed 1

recent stale
11 5 1 2 3 4 9

LRU list — ideal model

recent stale
1 2 3 4 5 6 10

recent Page 5 accessed 1 stale
5 1 2 3 4 6 10
11 Page 11 accessed 1

recent stale
11 5 1 2 3 4 9

Page 10 evicted

10

LRU - anonymousl/file split

* Anonymous and file pages have distinct properties

— Clean file pages can be just evicted, anonymous have to be swapped out at least once...
— Historically, reclaim has been biased towards file pages more than anonymous

* Single list would be ineffective when reclaiming just one type
* Hence separate anon and file LRU lists
— But now we have to choose which one (or both) to reclaim, and balance their sizes

LRU - anonymousl/file split

* Anonymous and file pages have distinct properties

— Clean file pages can be just evicted, anonymous have to be swapped out at least once...
— Historically, reclaim has been biased towards file pages more than anonymous

* Single list would be ineffective when reclaiming just one type
* Hence separate anon and file LRU lists
— But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

LRU - anonymousl/file split

* Anonymous and file pages have distinct properties

— Clean file pages can be just evicted, anonymous have to be swapped out at least once...
— Historically, reclaim has been biased towards file pages more than anonymous

* Single list would be ineffective when reclaiming just one type
* Hence separate anon and file LRU lists
— But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

!

LRU - anonymousl/file split

* Anonymous and file pages have distinct properties

— Clean file pages can be just evicted, anonymous have to be swapped out at least once...
— Historically, reclaim has been biased towards file pages more than anonymous

* Single list would be ineffective when reclaiming just one type
* Hence separate anon and file LRU lists
— But now we have to choose which one (or both) to reclaim, and balance their sizes

recent stale

!

anon LRU file LRU
1 4 5 6 8 2 3 7 9 10

LRU - activel/inactive split

* ldeal LRU model not achievable in practice
— Capturing each memory access for precise tracking would be prohibitively slow
— Approximated by detecting if page has been accessed since last check
— More effective if we track hotter and colder pages separately
* Hence separate active and inactive LRU lists for each type
— Also virtual fifth list for unevictable pages — not relevant to reclaim, not linking any pages today

— All together that's called lruvec

LRU - activel/inactive split

* ldeal LRU model not achievable in practice
— Capturing each memory access for precise tracking would be prohibitively slow
— Approximated by detecting if page has been accessed since last check
— More effective if we track hotter and colder pages separately
* Hence separate active and inactive LRU lists for each type
— Also virtual fifth list for unevictable pages — not relevant to reclaim, not linking any pages today

— All together that'’s called Lruvec

anon LRU
1 4 5 6 8

file LRU
2 3 7 9 10

LRU - activel/inactive split

* ldeal LRU model not achievable in practice
— Capturing each memory access for precise tracking would be prohibitively slow
— Approximated by detecting if page has been accessed since last check
— More effective if we track hotter and colder pages separately
* Hence separate active and inactive LRU lists for each type
— Also virtual fifth list for unevictable pages — not relevant to reclaim, not linking any pages today

— All together that'’s called Lruvec

anon LRU
1 4 5 6 8

2 3 7 9 10

LRU - activel/inactive split

* ldeal LRU model not achievable in practice
— Capturing each memory access for precise tracking would be prohibitively slow
— Approximated by detecting if page has been accessed since last check
— More effective if we track hotter and colder pages separately
* Hence separate active and inactive LRU lists for each type
— Also virtual fifth list for unevictable pages — not relevant to reclaim, not linking any pages today

— All together that'’s called Lruvec

anon active 1 4 5

anon inactive 6 8

anon LRU

1 A 5 6 3 file active | 2 3 7

fle LRU ‘ file inactive | g 10
2 3 7 9 10 unevictable | ust poison: | LisT Poison2

lruvec

LRU - node/memcg lruvecs

* Four reclaimable LRU lists per Iruvec
— Large part of reclaim heuristics is to decide how many pages to scan and try to reclaim in
each one (shrink the list)

* Pages are taken from the tail of each list, can be moved to the head of another list
(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

LRU - node/memcg lruvecs

* Four reclaimable LRU lists per Iruvec

— Large part of reclaim heuristics is to decide how many pages to scan and try to reclaim in
each one (shrink the list)

* Pages are taken from the tail of each list, can be moved to the head of another list
(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

* In practice, there are many Iruvecs
— Different memory cgroups have distinct lruvecs, for memcg reclaim
* Global memory reclaim has to iterate over all memcgs

— Different NUMA nodes have distinct Iruvecs, as nodes are reclaimed separately
* Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

LRU - node/memcg lruvecs

* Four reclaimable LRU lists per Iruvec

— Large part of reclaim heuristics is to decide how many pages to scan and try to reclaim in
each one (shrink the list)

* Pages are taken from the tail of each list, can be moved to the head of another list
(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

* In practice, there are many Iruvecs
— Different memory cgroups have distinct lruvecs, for memcg reclaim
* Global memory reclaim has to iterate over all memcgs
— Different NUMA nodes have distinct Iruvecs, as nodes are reclaimed separately
* Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

* Summary: each userspace page placed on a LRU list in one of many Iruvecs:

LRU - node/memcg lruvecs

* Four reclaimable LRU lists per Iruvec

— Large part of reclaim heuristics is to decide how many pages to scan and try to reclaim in
each one (shrink the list)

* Pages are taken from the tail of each list, can be moved to the head of another list
(activated/deactivated), back to head of the same list (kept), or evicted entirely (reclaimed)

* In practice, there are many Iruvecs

— Different memory cgroups have distinct lruvecs, for memcg reclaim
* Global memory reclaim has to iterate over all memcgs

— Different NUMA nodes have distinct Iruvecs, as nodes are reclaimed separately
* Each node has own kswapd daemon, memory pressure can differ due to e.g. mempolicies

* Summary: each userspace page placed on a LRU list in one of many lruvecs:

Root memcg Memcgl Memcg2 Memcg3 Memcg4d Memcgbs
Node O lruvec lruvec lruvec lruvec lruvec lruvec
Node 1 lruvec lruvec lruvec lruvec lruvec lruvec

4

Page states relevant to reclaim selection

* Determined by page flags, mainly the following:
— LRU - page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset
* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

Page states relevant to reclaim selection

* Determined by page flags, mainly the following:
— LRU - page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset
* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

struct page

Page flags
LRU | Active | Referenced | Workingset

Page states relevant to reclaim selection

* Determined by page flags, mainly the following:
— LRU - page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset
* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

Page table entry
6 5 413 2 1 |0

Dirty | Accessed | ... | ... |U/S | RIW

struct page
Page flags «>
LRU | Active | Referenced | Workingset

Page states relevant to reclaim selection

* Determined by page flags, mainly the following:
— LRU - page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset
* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

Page table entry
6 5 413 2 1 |0

Dirty | Accessed | ... | ... |U/S | RIW

struct page
Page flags «—>
LRU | Active | Referenced | Workingset

\ Page table entry
6 5 413 2 1 |0
P

Dirty | Accessed | ... | ... [UIS | RIW

Page states relevant to reclaim selection

* Determined by page flags, mainly the following:
— LRU - page is on any LRU list, Active — page is on active list
— Referenced — inactive page has been accessed “recently”
— Workingset — page is considered part of active userspace’s workingset
* Affected by Accessed bit in page tables entries (PTE’s) that map this page
— CPU sets them, folio_referenced() counts and resets (via a rmap walk) them

Page table entry
6 5 413 2 1 |0

Dirty | Accessed | ... | ... |U/S | RIW

struct page
Page flags «—>
LRU | Active | Referenced | Workingset

\ Page table entry
6 5 413 2 1 |0
P

PTE PTE Dirty | Accessed | ... | ... | UIS | RIW

Not present

initial page fault Not present

lactive
Ireferenced

kern/usr
access

initial page fault Not present

lactive
Ireferenced

kern/usr
access

initial page fault Not present

lactive

#PTE.A=0

lactive
Ireferenced

kern/usr reclaim
access keeps

initial page fault Not present

lactive

#PTE.A=0

lactive
Ireferenced

kern/usr reclaim
access keeps

initial page fault Not present

lactive

#PTE.A=0

userspace
lactive v
Ireferenced lactive

kern/usr reclaim
access keeps

initial page fault Not present

lactive

#PTE.A=0

userspace
lactive v
Ireferenced lactive

kern/usr reclaim
access keeps

initial page fault Not present

lactive
#PTE.A=0 H#PTE.A=0
userspace

lactive v

Ireferenced lactive

kern/usr reclalm> reclaim N
access keeps promotes ?

initial page fault Not present

lactive
#PTE.A=0 H#PTE.A=0
userspace

lactive v

Ireferenced lactive

kern/usr reclalm> reclaim N
access keeps promotes Q

initial page fault Not present

|

lactive

#PTE.A=0

userspace
lactive v
Ireferenced lactive

kern/usr reclaim> reclaim> reclaim N
access demotes keeps promotes Q

initial page fault Not present

|

lactive

#PTE.A=0

userspace
lactive v
Ireferenced lactive

kern/usr reclaim> reclaim> reclaim N
access demotes keeps promotes Q

initial page fault Not present

I
\
/ #PTE.A=0

lactive “« |
kern/usr reclaim > reclaim> reclaim N
access demotes keeps promotes Q

Ireferenced
#PTE.A=0

lactive
Ireferenced

lactive

initial page fault Not present

I

lactive « | T

Ireferenced lactive

4PTE.A=O referenced |
#PTE.A=0 #PTE.A=0
userspace /

lactive v

Ireferenced lactive

kern/usr reclaim> reclaim> reclaim N
access demotes keeps promotes ?

Not present

I

lactive “« |
Ireferenced lactive

#PTE.A=0 H#PTE.A=0
Userspace
Userspace
lactive v

Ireferenced lactive

initial page fault

kern/usr reclaim> reclaim> reclaim N
access demotes keeps promotes Q

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault

Not present

o

—

lactive
#PTE.A=0 #PTE.A=0
userspace
v
lactive
kern/usr reclaim> reclaim reclaim
access demotes Kkeeps

>
promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault

Not present

<«

lactive

#PTE.A=0

userspace
v

lactive

kern/usr

—

#PTE.A=0

lUSI‘

reclaim

reclaim

reclaim

acCcess

P
demotes

keeps

>
promotes g

lactive

Ireferenced

#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault

Not present

<«

lactive

#PTE.A=0

kern/usr

—

#PTE.A=0

reclaim

reclaim

I exec.

reclaim

acCccess

P
demotes

keeps

>
promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault

Not present

<«

lactive

#PTE.A=0

userspace
v

lactive

kern/usr

—

#PTE.A=0

exec.
usr | file
only

reclaim

reclaim

reclaim

acCcess

P
demotes

keeps

>
promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault
A

Not present

—

lactive

#PTE.A=0

userspace
v

lactive

kern/usr

—_

#PTE.A=0

exec.
usr | file
only

reclaim

reclaim

reclaim

acCcess

P
demotes

keeps

>
promotes g

Not present

initial page fault
A

lactive — \

Ireferenced lactive
#PTE.A=O referenced
#PTE.A=0 #PTE.A=0
userspace exec
userspace usr | fije
lactive v only
Ireferenced lactive

%c. file only

kern/usr reclaim> reclaim> reclaim N
access demotes keeps promotes Q

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

initial page fault
A

Not present

—

e

%c. file only

lactive

#PTE.A=0

userspace
v

lactive

kern/usr

—_

#PTE.A=0

exec.
usr | file
only

reclaim

reclaim

reclaim

acCcess

P
demotes

keeps

>
promotes g

Not present

initial page fault
A

lactive — T

Ireferenced lactive
#PTE.A=O referenced
#PTE.A=0 #PTE.A=0
userspace exec
userspace usr | fije
lactive v only
Ireferenced lactive

l usr (diff. 1\ exec. file only
process)

lactive

Ireferenced kern/usr reclaim reclaim reclaim

> > > >
_ access demotes keeps promotes »

lactive

Ireferenced
#PTE.A=0

l userspace

lactive

Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

—

exec. file only

lactive

#PTE.A=0

userspace
v

lactive

kern/usr

—_

#PTE.A=0

reclaim

exec.
usr | file
only

acCcess

P
demotes

keeps

romotes
P 4

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

—

exec. file only

lactive

#PTE.A=0

userspace
v

lactive

kern/usr

—_

#PTE.A=0

exec.
usr | file
only

reclaim

reclaim

reclaim

acCcess

P
demotes

keeps

>
promotes g

Not present

initial page fault
A

lactive —

Ireferenced —» | lactive

HPTE.A=0 referenced |

#PTE.A=0 H#PTE.A=0

exec.
usr | file
only

userspace

lactive

usr (diff.

exec. file only
process)

lactive

Ireferenced kern/usr reclaim reclaim reclaim

> > > >
_ access demotes keeps promotes »

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

—_

——
kernel lactive
#PTE.A=0
userspace
A 4
lactive

exec. file only

kern/usr

#PTE.A=0

exec.
usr | file
only

reclaim

reclaim

reclaim

acCcess

P
demotes

keeps

>
promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

——
kernel — | lactive
#PTE.A=0
userspace
A 4
lactive
kernel o

exec. file only

kern/usr

reclaim

exec.
usr | file
only

reclaim

reclaim

acCcess

P
demotes

keeps

>
promotes g

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

——
kernel — | lactive
#PTE.A=0
userspace
A 4
lactive
kernel o

exec. file only

/

kern/usr

reclaim

exec.
usr | file
only

reclaim

reclaim

acCcess

P
demotes

keeps

>
promotes g

Workingset Detection

* Premise: transitioning workloads might be thrashing if pages are not accessed often
enough while on inactive list to have chance to be promoted

— Inactive list is intentionally small, the workload’s working set might be just larger
— If arecently reclaimed page is faulted in again, we don’t know if it's new or thrashing
— Meanwhile the pages on active list might be idle, but we won’t know
* Example: Workload accesses pages 789101178910 11 ...
— The access distance is 5 (4 different pages between two accesses to the same page)
— Inactive list only has 4 pages (NR_inactive = 4), thus each access is a fault
— Pages 1 — 6 were active before but now may be actually idle
* ldea: determine this access distance, even for pages that have been evicted
— Use shadow entries of radix tree/XArray for evicted pages to store information
— Precise tracking again impossible, need to approximate

active Inactive evicted
1 2 3 4 5 6 11 10 9 8 7

Approximating Access Distance (1)

Observation: Access that causes page fault (7) places the page to inactive list
head, pushes all other pages towards tail, evicts tail page (8)

Observation: Access on inactive list (8) results in activation, also pushes all
pages previously ahead of the page on the inactive list towards tail (now 9)

Thus: sum of evictions and activations over some time period means at least N
Inactive page accesses happened during that period

And: pushing an inactive page N slots towards tail needs at least N
Inactive/faulting page accesses

Approximating Access Distance (1)

* Observation: Access that causes page fault (7) places the page to inactive list
head, pushes all other pages towards tail, evicts tail page (8)

* Observation: Access on inactive list (8) results in activation, also pushes all
pages previously ahead of the page on the inactive list towards tail (now 9)

* Thus: sum of evictions and activations over some time period means at least N
Inactive page accesses happened during that period

* And: pushing an inactive page N slots towards tail needs at least N
Inactive/faulting page accesses

active inactive evicted
3 4 6 11 10 9 7
3 4 6 7 11 10 8

Approximating Access Distance (1)

Observation: Access that causes page fault (7) places the page to inactive list
head, pushes all other pages towards tail, evicts tail page (8)

Observation: Access on inactive list (8) results in activation, also pushes all
pages previously ahead of the page on the inactive list towards tail (now 9)

Thus: sum of evictions and activations over some time period means at least N
Inactive page accesses happened during that period

And: pushing an inactive page N slots towards tail needs at least N
Inactive/faulting page accesses

Approximating Access Distance (1)

Observation: Access that causes page fault (7) places the page to inactive list
head, pushes all other pages towards tail, evicts tail page (8)

Observation: Access on inactive list (8) results in activation, also pushes all
pages previously ahead of the page on the inactive list towards tail (now 9)

Thus: sum of evictions and activations over some time period means at least N
Inactive page accesses happened during that period

And: pushing an inactive page N slots towards tail needs at least N
Inactive/faulting page accesses

active inactive evicted
3 4 6 11 10 9 7
2 3 5 6 11 10 8

Approximating Access Distance (2)

Eviction of a page means at least NR_inactive pages were accessed while it
was in memory

If we note sum of evictions + activations at the moment of eviction (E), and at the
moment of refault (R), the difference (R-E) approximates number of accesses
while the page was evicted — called refault distance

Combined minimum access distance: NR_inactive + (R-E)

Page would possibly not have to be evicted if:
NR_inactive + (R-E) <= NR_active + NR_inactive

Simplified:

(R-E) <= NR_active
Thus when this inequality holds on refault, activate page immediately
Full writeup: see mm/workingset.c

lactive

Ireferenced
#PTE.A=0

l userspace

lactive
Ireferenced

l usr (diff.

process)

lactive

Ireferenced

initial page fault
A

Not present

——
kernel — | lactive
#PTE.A=0
userspace
A 4
lactive
kernel o

exec. file only

/

kern/usr

reclaim

exec.
usr | file
only

reclaim

reclaim

access

>
demotes

keeps

>
promotes g

workingset

initial page fault Not present refault
/ 4 activation
lactive —
Ireferenced kemel, | jactive
#PTE.A=O referenced
#PTE.A=0
l userspace / e
| userspace lusr Ifile

lactive v only
Ireferenced kernel lactive kernel

PTEASL i
usr (diff. exec. file only
process) f

lactive \ky

erne _ _ _
Ireferenced kern/usr> reclaim > reclaim . reclaim .
_ access demotes keeps promotes v

Workingset Detection Implementation

* Initially was implemented for file pages only, later also for anonymous pages
* Counter of evictions plus activations in Lruvec->nonresident_age
— Counters of workingset refaults in Llruvec->refaults[ANON_AND_FILE]

* Refault distance (R-E) is compared to workingset size

— Sum of all LRU sizes except the inactive list of the page’s type

— File page refault distance compared to NR_active_file + NR_active_anon +
NR_inactive_anon

— Anon page refault distance compared to NR_active_anon + NR_active_file +
NR_inactive_file

— But if swap is not available, anon list sizes are not included in the sums
* Additionally, when page is deactivated, its Workingset flag is set

— The flag is recorded in a shadow entry, and set again upon refault, never cleared (i.e.
only when stale shadow entries are reclaimed)

— Refaults with Workingset flag restored play role in reclaim cost model

Global Reclaim Algorithm

* Per-node kswapd or direct reclaim when a node is below watermarks — both
eventually call shrink_node()

* Decide if anon and/or file pages should be deactivated — active/inactive
balancing

— Goal: large active list with low amount of reclaim work, small inactive list as a busy
“proving ground”, except when the workload’s working set is transitioning

— Formulain inactive_is_1low(), based on sqgrt of the active+inactive list sizes
* 1:1 up to 100MB worth of memory on the LRU lists
* 3:1 (active:inactive) at 1GB memory — 25% pages should be on inactive list
* 320:1 at 10TB memory

— Deactivation allowed when inactive list size is below the target ratio

— Or when workingset refaults are happening, based on a rather coarse check (the counter
of file workingset refaults of anon/file changed since last reclaim)

Global Reclaim Algorithm #2

Anon/file balancing — decide how much to shrink from each type’s LRU

* Some corner case decisions first

— “Many” (based on reclaim priority) inactive file pages and we do not deactivate file pages,
prioritize file reclaim — “cache trim mode”

— Too few file pages (active+inactive) with “many” inactive anon pages and we do not
deactivate anon pages, prioritize anon reclaim — “file is tiny”

* Tries to prevent runaway feedback loop where small file LRU means no chance to get pages
promoted

* Iterate over all memcgs, calling shrink_T1lruvec()
* Determine how much to scan in each LRU list by get_scan_count()
— Consider only file LRUs — swapping not possible or cache trim mode enabled

— Consider only anon LRUs — “file is tiny”
— Scan both equally — close to OOM (but swappiness is not 0) - no time for fine balancing

— Balance anon and file LRUs according to Fractional Cost Model

Global Reclaim Algorithm #3

Anon/file fractional cost model —in get_scan_count ()

* |dea: if reclaim causes more IO for file pages than anon pages, put more pressure on anon
pages, and vice versa — pressure is inversely proportional to to cost

We count workingset refaults that restore Workingset flag (which means a formerly active
page was reclaimed), and dirty page write-outs, as the reclaim cost

— To soften corner cases, soften the resulting pressure from interval [0, 1] to [1/3, 2/3]

This is also weighted by vm. swappiness sysctl, with range from 0 to 200 (default 60)

— Vm.swappiness=0 — anon reclaim has infinite cost, reclaim only file pages

— vm.swappiness=100 — anon and file pages have same IO cost
— vm.swappiness=200 - file reclaim has infinite cost, reclaim only anon pages
The result is fraction between 0 and 1 for anon, and for file, both add up to 1

Calculate how many pages to scan from each LRU list - target
— NR_pages >> reclaim_prio (prio starts at 12 — 1/4096 of the list, prio decreased each round)

— Apply calculated fraction, or set to O if we are not reclaiming the particular type

Global Reclaim Algorithm #4

* The LRU list shrinking itself
— Call shrink_1list() in aloop, scan up to 32 pages (SWAP_CLUSTER_MAX) in iteration
* Skip active list if deactivation is not allowed

— Isolate pages from tail of list, then deactivate, keep or reclaim according to their flags and page
table entries with active bit set

— Terminate when budget (initialized by get_scan_count () targets) is exhausted for all lists
— After having reclaimed the target number of pages (SWAP_CLUSTER_MAX or high watermark),
keep scanning to deplete the rest of the budget, but:
* Stop scanning the file/anon type with lower remaining budget
* For the other type, adjust the budget to keep the original anon/file ratio

* Example: target was 64 file, 32 anon pages, after scanning and reclaiming 16 from each, scan
additional 16 file pages (so the result is 32 file, 16 anon)

— Finally, scan 32 pages from active anon list
* If swap is available and inactive anon is low
* Ignores prior decision whether to deactivate anon

Reclaiming a page - shrink_inactive_list()

* Remove (isolate) from the LRU list
* Unmap from processes mapping the page
* Clean page can be freed immediately

* Dirty page — has to be written back first
— File pages — tricky due to potentially large stacks, deadlock concerns (GFP_NOFS)
* Normally should be written back from flusher threads / in response to dirty throttling
* From kswapd — may in some cases write back (pageout ()) immediately
* Otherwise only mark page with reclaim flag and rotate to active list
— Anonymous page, allocate swap if needed, pageout ()

— In the process, page’s writeback and reclaim flags will be set, asynchronous write
initiated, and page will rotate back to head of inactive list

— When writeback is finished, folio_end_writeback() will notice the reclaim flag and rotate
the page to the end of inactive list

madvise(2) - reclaim related flags

* MADV_DONTNEED - throw away private anonymous pages, unmap file pages
— might be reclaimed later due to memory pressure, no explicit reclaim action
* MADV_FREE (since 4.5) — private anon only — clear page dirty, referenced flags, move it to
inactive file list
— pages will be discarded (destructive, no swap-out) soon in case of memory pressure
— a write to the page before the discard will cancel the discard
— cheaper than MADV_DONTNEED - no immediate page table zapping
Since 5.4, also two new always non-destructive modes:
* MADV_COLD - deactivate pages (move to inactive list, clear referenced flags)
— swap-out or dirty page writeback will happen during reclaim
— only pages not mapped by multiple processes
* MADV_PAGEOUT — immediately reclaim pages
— including swap-out or dirty page writeback
— only pages not mapped by multiple processes

Page reclaim - conclusion

* This was an overview, implementation has even more details and special cases

* Some topics omitted (almost) completely

— Writeback, swapping, dirty throttling, memcg reclaim, slab reclaim (shrinkers),
watermarks handling, kswapd vs direct reclaim, reclaim/compaction, OOM, PSI...

* Complex system, results of years of evolution, including big recent changes
— No overall documentation
* Many moving parts, hard to predict behavior, hard to evaluate patches!
— Elaborate cost models applied only to 1/3 of decision space
— OTOH, major decisions made by looking if a number has changed since last time
— Explicit corner case heuristics against undesired feedback loops
— We've seen issues (in older kernel) e.g. with file pages thrashing and anon not reclaimed

— Users expecting no swapping until page cache low, but now thanks to workingset
estimation, cold anonymous pages can be swapped out during e.g. overnight virus scan

Multigenerational LRU Framework

* Patchset from Yu Zhao (Google) merged in v6.1 (Dec 2022)

Multiple generations (at least 3) instead of active/inactive lists — separate lists (per
file/anon and zone), generation number in page flags word

— Faults go to youngest generation, buffered file accessed to oldest

— Accessed bit (found during scan) moves page to youngest generation

Generations also divided to tiers for more fine-grained mark_page_accessed()
counting, tier also part of page flags, but not separate lists

— Balancing tiers using workingset refault info, PID controller-like feedback loop
Scanning for accessed bits through page table walks, not Iru lists

— Attempts to exploit spatial locality, avoid expensive rmap walks (fallback to Iru on sparse
mappings); actually similar to how old Linux versions used to work

— Maintains lists of mm structs per memcgs, skipping of sleeping processes and inactive
PMDs, no page level zigzag between vma'’s

Eviction processes oldest generation, balances between file and anon by refaults

Multigenerational LRU Framework

* Optional. Has sysfs knobs for run-time enable, thrashing protection

* Pros:
— Kswapd reduced rmap walk CPU usage, reduced direct reclaim latency
— Tools for workload scheduling decisions (workingset estimation), proactive reclaim
— Some success stories — reduced swap storms, improved throughputs...

* Cons:
— Changed many things at once, kernel development prefers incremental improvements
* Feedback not fully successful, “Linus likes this” helped merging anyway
— Largely orthogonal to existing mechanism, not its replacement — maintenance burden

— Adds user space knobs (at least not mandatory to use)

Thank you.

	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 8 (5)
	Slide: 8 (6)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 12 (5)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 13 (5)
	Slide: 13 (6)
	Slide: 13 (7)
	Slide: 13 (8)
	Slide: 13 (9)
	Slide: 13 (10)
	Slide: 13 (11)
	Slide: 13 (12)
	Slide: 13 (13)
	Slide: 13 (14)
	Slide: 13 (15)
	Slide: 13 (16)
	Slide: 13 (17)
	Slide: 13 (18)
	Slide: 13 (19)
	Slide: 13 (20)
	Slide: 13 (21)
	Slide: 13 (22)
	Slide: 13 (23)
	Slide: 13 (24)
	Slide: 13 (25)
	Slide: 13 (26)
	Slide: 13 (27)
	Slide: 13 (28)
	Slide: 14
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 15 (4)
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28

