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About the CourseAbout the Course
● Lecture

– Mondays at 2:00 p.m. in lecture room S7
● From February 17th to May 19th 2025

– Follow up to the Operating Systems (NSWI200) course from the winter semester
● Prior understanding of basic concepts is assumed

● https://d3s.mff.cuni.cz/teaching/nswi161/
– Up-to-date information and current affairs

– Slide decks of past lectures and other study materials

– Urgent updates will be sent out using e-mails via the Student Information System

https://d3s.mff.cuni.cz/teaching/nswi161/
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Further InformationFurther Information
● https://gitlab.mff.cuni.cz/teaching/nswi161/forum

– GitLab forum for both technical and organizational inquires

– Just create a new issue and/or subscribe to the notifications

● Lecturer
– Martin Děcký (decky@d3s.mff.cuni.cz)

● Employed by Kernkonzept GmbH, no permanent office at Charles University at the moment
● Consultations on demand after a prior agreement (ideally before or after the lecture)

● Guarantor
– Petr Tůma (petr.tuma@d3s.mff.cuni.cz)

● Office S 205 (Malá Strana)

https://gitlab.mff.cuni.cz/teaching/nswi161/forum
mailto:decky@d3s.mff.cuni.cz
mailto:petr.tuma@d3s.mff.cuni.cz
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Course GoalsCourse Goals
● Insight into implementation mechanisms of operating systems

– Relevant not only for system-level development per se
● Functional and extra-functional properties (reliability, performance, etc.) of 

a software tier derived from the properties of the underlying tiers
● All abstractions are leaky to a certain degree (black boxes are rarely truly 

black)
● Insight into design principles of operating systems

– Understanding requirements and constraints of specific contexts
● One size does not fit all
● Not everything has been already optimally solved
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Course StructureCourse Structure

● Two main interleaving “tracks”
– Operating systems architecture (high-level concerns)
– Operating systems implementation (overview of technical aspects)

● Guest lectures
– Invited lectures by industrial experts

● No fixed schedule at this moment (follow the course web site)

– Lectures by students
● More on this later
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Coarse-grained Course TopicsCoarse-grained Course Topics
● Subject to change based on audience preferences

– Programming languages and techniques
– Interfaces, interactions, abstractions and run-time environments
– Compatibility and portability
– Observability, performance, debugging, tracing and instrumentation
– Virtualization
– File systems and data storage
– Design patterns and principles, architecture guidelines, requirements and 

configurations
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Coarse-grained Course TopicsCoarse-grained Course Topics

● Subject to change based on audience preferences
– Safety, security and reliability
– Verification, validation and certification
– Memory and resource management
– Communication
– Concurrency, parallelism and synchronization
– Service management
– Real time
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Literature and ResourcesLiterature and Resources
● This course is not based on a specific textbook

– Individual references and materials will be presented as necessary
● English Wikipedia for the general overview
● Web search and LLM queries for suggestions
● Similar courses at other universities
● Good textbooks
● Academic papers from good conferences and journals (e.g. OSDI, SOSP, ATC, FAST, HotOS, EuroSys, 

SIGOPS, etc.)
● Dedicated on-line resources (e.g. LWN.net, OSDev.org)
● Open source operating systems
● Hands-on experience



 



 https://microkernel.info

https://microkernel.info/
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How Can a LLM Help?How Can a LLM Help?
● In its own words of ChatGPT 4o:

– As a computer science student enrolled in an Advanced Operating Systems course, you 
can leverage ChatGPT in various ways to enhance your learning and understanding of 
the subject matter. Here's how I can be particularly useful:

● If you're struggling with any of the topics listed in your course, you can ask me to provide 
explanations or analogies to help you grasp these concepts better.

● You can pose specific questions about course material. I can provide detailed answers or guide 
you to resources for further reading.

● I can help you understand code snippets, debug issues, or demonstrate best practices in 
coding, relevant to operating systems.

● We can explore different software architectures and design patterns used in operating 
systems. I can provide insights on how these patterns are implemented in real-world systems.
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How Can a LLM Help?How Can a LLM Help?
● I can suggest academic papers, textbooks, or online resources that delve deeper into these topics.
● Use me as a tool for revising topics or practicing for exams. I can help you with summaries, key points, or by 

conducting mock quizzes.
● I can provide a historical perspective on the evolution of operating systems, highlighting the reasons behind 

certain design choices and how they have shaped modern operating systems.
● You might explore how different operating systems handle similar tasks. I can help you compare and contrast 

these approaches, which can deepen your understanding of the pros and cons of various architectural 
decisions.

● I can help you conceptualize and simulate hypothetical operating system scenarios. For example, we can 
discuss what might happen under certain conditions in memory management or task scheduling, enhancing 
your problem-solving skills in these areas.

– Remember, while I can be a valuable resource for information and guidance, it's important to cross-
reference any critical information with your course materials or other authoritative sources, 
especially for academic work.



 

Source: DALL·E 3 via ChatGPT 4o
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CreditsCredits
● Traditional approach

– Written exam based on the actual topics taught
● Half of the maximal number of points required for passing
● List of questions/tasks will be published at the end of the semester

● Hands-on approach
– Individual or small team implementation project

● Goals and criteria need to be agreed upon between the candidates and the lecturer & guarantor
● Do not hesitate to approach us (the sooner the better)

● Contributor approach
– Preparing and presenting a standalone lecture or an extended demonstration

● Topic not necessarily limited to the list shown before
● The same two points as just above
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Implementation ProjectImplementation Project
● Random topic suggestions

– Your own serious / fun / pet / study / research project
● Some non-trivial connection to operating systems required

● Can be an extension of a previous work (e.g. your winter semester assignment) or something you plan to extend in the 
future (e.g. your master thesis)

– But obviously not something you have already finished

– Targeted contribution to an (open source) operating system project
● Tip: Many open source projects have a list of Google Summer of Code projects

● Pro tip: https://www.helenos.org :)

● Pro tip from my employer: https://www.l4re.org :)

– Original implementation of an idea from a research paper
● Could be both rewarding and treacherous

https://www.helenos.org/
https://www.l4re.org/
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About the LecturerAbout the Lecturer
● Charles University, Faculty of Mathematics and Physics

– MSc. (2005), Ph.D. (2015)

– Researcher at the Department of Distributed and Dependable Systems (2008 – 2017)

– Co-author of the HelenOS microkernel multiserver operating system (since 2004)

● Huawei Technologies

– Senior Research Engineer at the Munich Research Center (2017 – 2019)

– Principal Research Engineer and co-founder at the Dresden Research Center (2019 – 2021)

– Contributing to the HarmonyOS NEXT microkernel-based operating system

● Kernkonzept GmbH

– Senior Software Engineer (since 2021)

– Contributing to the L4Re microkernel-based operating system framework

https://d3s.mff.cuni.cz/
https://www.helenos.org/
https://en.wikipedia.org/wiki/HarmonyOS#HarmonyOS_NEXT
https://www.kernkonzept.com/
https://l4re.org/
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About Kernkonzept
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managed
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2012
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TUDresden

International
teamof35

Wide
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since1996

Continuously
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innovative
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system
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Locatedin
Dresden,
Germany



 

Kernkonzept Markets
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Kernkonzept CustomersKernkonzept Customers
● infodas

– SDoT Security Gateway and other products
● German & NATO SECRET classification

● genua

– Secure laptop, Cyber data diode
● BSI approval for NATO & EU SECRET

● Elektrobit (wholly-owned subsidiary of Continental)

– EB Corbos Hypervisor
● Bare-metal mixed-criticality hypervisor for automotive systems (targeting Adaptive AUTOSAR)

● Actually running in Volkswagen ID.3 and other cars

● Electrolux, Airbus, IABG, etc.

40

https://www.infodas.com/en/
https://www.genua.eu/
https://www.elektrobit.com/
https://www.continental.com/en/
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L4Re in a NutshellL4Re in a Nutshell

L4ReMicrokernel/Hypervisor

Hardware

L4ReRun-timeEnvironment

Native driver Native task

uvmm

L4Linux

Non-critical 
VM

Critical
VM

Privileged
mode

Non-privileged
mode

RTOSfr
ee

uvmm ...



 
Recommendations
1.1



24

Please interact
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Make Sure This Course Is Useful to Make Sure This Course Is Useful to YouYou
● Not possible to cover every topic in perfectly detail

– Let us focus on the topics that you care about

– Let us skip parts that you already understand

● Ask questions

– There is no point in listening to something that you do not understand

– There are really no stupid questions

● Discuss

– Despite best effort, everyone is biased

– This course is not about dogmas, but about nuances

– Think about why and how would you do things differently
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Please take notes
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Taking Notes HelpsTaking Notes Helps
● Passive listening does not lead to understanding

– Everything seems reasonable and logical while listening (obviously)

– Nobody remembers all the details from a 90-minute lecture (especially after a few days)

– Reformulating what you hear into concise notes helps detect that you might be missing something

● Slides do not contain all the information

● Pro tips

– Explain what you have learned to somebody else (based on your notes)
● Talk to a friend, roommate, etc.

– Actively force yourself to ask a question
● Even if everything seems clear
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Please try things out
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Exploring Is Always Better than WatchingExploring Is Always Better than Watching
● People are generally optimistic

– Have I really understood everything? – Yes, of course!

– Is my current understanding sufficient for a practical application? – Yes, of course!

– Am I still missing some details? – Why should I?

● You can be sure about the points above only if you put them to test

– Experiment with the ideas we talk about
● Create a prototype, look up an actual implementation

– Run the code
● Configure it, tweak it, debug it, extend it

– Try to break it
● Finding a weak spot tests your understanding to the limit
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Exercise
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Explore a New Operating SystemExplore a New Operating System

● Managarm
– https://managarm.org
– General-purpose
– Desktop-oriented
– Microkernel-based
– Asynchronous kernel design
– Some degree of Linux compatibility

https://managarm.org/
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Exploration TipsExploration Tips
● Read the available documentation

– At first, do not drown yourself in details
● Just skim it and focus on the key aspects

– Structure of the components of the system
– Languages and tools used
– How to make it work

● Get the sources
– Examine the directory structure

– Look briefly into the build system
● Remember: Not everything that is compiled is necessarily linked together
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Exploration TipsExploration Tips
● Start from the bottom

– What is the boot protocol?
● What standard boot loader is used?
● Is there a custom (2nd-stage) boot loader?
● Where is the boot entry point?

– Examine the linker script(s)
● What is the memory layout of the kernel?
● Where is the assembly entry point to the kernel?
● Where is the high level language entry point to the kernel?

– Explore the call graph of the kernel from the high level language entry point
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Exploration TipsExploration Tips
● Go back to the documentation

– Map the structure from the documentation to the sources
– Are there some easily distinguishable / recognizable parts of the kernel?

● Platform-specific vs. platform-neutral code?
● Drivers?
● Support for threads?
● Page table management?
● Syscall handlers?

● Build the sources
– Prepare the build environment according to the documentation
– Run the build
– Run the built image
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Exploration TipsExploration Tips

● Explore the user space
– What are the components?
– What are the libraries?
– How does a syscall look “from the other side”?
– How is the user experience?
– How to create a simple hello world program?

● Explore the documentation and sources in detail
– What do you like and what do you dislike?



 

Thank you!
Questions?
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