
 

Advanced Operating Systems
Summer Semester 2024/2025

Martin Děcký



 
Introduction
1



3

About the CourseAbout the Course
● Lecture

– Mondays at 2:00 p.m. in lecture room S7
● From February 17th to May 19th 2025

– Follow up to the Operating Systems (NSWI200) course from the winter semester
● Prior understanding of basic concepts is assumed

● https://d3s.mff.cuni.cz/teaching/nswi161/
– Up-to-date information and current affairs

– Slide decks of past lectures and other study materials

– Urgent updates will be sent out using e-mails via the Student Information System

https://d3s.mff.cuni.cz/teaching/nswi161/


4

Further InformationFurther Information
● https://gitlab.mff.cuni.cz/teaching/nswi161/forum

– GitLab forum for both technical and organizational inquires

– Just create a new issue and/or subscribe to the notifications

● Lecturer
– Martin Děcký (decky@d3s.mff.cuni.cz)

● Employed by Kernkonzept GmbH, no permanent office at Charles University at the moment
● Consultations on demand after a prior agreement (ideally before or after the lecture)

● Guarantor
– Petr Tůma (petr.tuma@d3s.mff.cuni.cz)

● Office S 205 (Malá Strana)

https://gitlab.mff.cuni.cz/teaching/nswi161/forum
mailto:decky@d3s.mff.cuni.cz
mailto:petr.tuma@d3s.mff.cuni.cz


5

Course GoalsCourse Goals
● Insight into implementation mechanisms of operating systems

– Relevant not only for system-level development per se
● Functional and extra-functional properties (reliability, performance, etc.) of 

a software tier derived from the properties of the underlying tiers
● All abstractions are leaky to a certain degree (black boxes are rarely truly 

black)
● Insight into design principles of operating systems

– Understanding requirements and constraints of specific contexts
● One size does not fit all
● Not everything has been already optimally solved



6

Course StructureCourse Structure

● Two main interleaving “tracks”
– Operating systems architecture (high-level concerns)
– Operating systems implementation (overview of technical aspects)

● Guest lectures
– Invited lectures by industrial experts

● No fixed schedule at this moment (follow the course web site)

– Lectures by students
● More on this later



7

Coarse-grained Course TopicsCoarse-grained Course Topics
● Subject to change based on audience preferences

– Programming languages and techniques
– Interfaces, interactions, abstractions and run-time environments
– Compatibility and portability
– Observability, performance, debugging, tracing and instrumentation
– Virtualization
– File systems and data storage
– Design patterns and principles, architecture guidelines, requirements and 

configurations



8

Coarse-grained Course TopicsCoarse-grained Course Topics

● Subject to change based on audience preferences
– Safety, security and reliability
– Verification, validation and certification
– Memory and resource management
– Communication
– Concurrency, parallelism and synchronization
– Service management
– Real time



9

Literature and ResourcesLiterature and Resources
● This course is not based on a specific textbook

– Individual references and materials will be presented as necessary
● English Wikipedia for the general overview
● Web search and LLM queries for suggestions
● Similar courses at other universities
● Good textbooks
● Academic papers from good conferences and journals (e.g. OSDI, SOSP, ATC, FAST, HotOS, EuroSys, 

SIGOPS, etc.)
● Dedicated on-line resources (e.g. LWN.net, OSDev.org)
● Open source operating systems
● Hands-on experience



 



 https://microkernel.info

https://microkernel.info/


12

How Can a LLM Help?How Can a LLM Help?
● In its own words of ChatGPT 4o:

– As a computer science student enrolled in an Advanced Operating Systems course, you 
can leverage ChatGPT in various ways to enhance your learning and understanding of 
the subject matter. Here's how I can be particularly useful:

● If you're struggling with any of the topics listed in your course, you can ask me to provide 
explanations or analogies to help you grasp these concepts better.

● You can pose specific questions about course material. I can provide detailed answers or guide 
you to resources for further reading.

● I can help you understand code snippets, debug issues, or demonstrate best practices in 
coding, relevant to operating systems.

● We can explore different software architectures and design patterns used in operating 
systems. I can provide insights on how these patterns are implemented in real-world systems.



13

How Can a LLM Help?How Can a LLM Help?
● I can suggest academic papers, textbooks, or online resources that delve deeper into these topics.
● Use me as a tool for revising topics or practicing for exams. I can help you with summaries, key points, or by 

conducting mock quizzes.
● I can provide a historical perspective on the evolution of operating systems, highlighting the reasons behind 

certain design choices and how they have shaped modern operating systems.
● You might explore how different operating systems handle similar tasks. I can help you compare and contrast 

these approaches, which can deepen your understanding of the pros and cons of various architectural 
decisions.

● I can help you conceptualize and simulate hypothetical operating system scenarios. For example, we can 
discuss what might happen under certain conditions in memory management or task scheduling, enhancing 
your problem-solving skills in these areas.

– Remember, while I can be a valuable resource for information and guidance, it's important to cross-
reference any critical information with your course materials or other authoritative sources, 
especially for academic work.



 

Source: DALL·E 3 via ChatGPT 4o



15

CreditsCredits
● Traditional approach

– Written exam based on the actual topics taught
● Half of the maximal number of points required for passing
● List of questions/tasks will be published at the end of the semester

● Hands-on approach
– Individual or small team implementation project

● Goals and criteria need to be agreed upon between the candidates and the lecturer & guarantor
● Do not hesitate to approach us (the sooner the better)

● Contributor approach
– Preparing and presenting a standalone lecture or an extended demonstration

● Topic not necessarily limited to the list shown before
● The same two points as just above



16

Implementation ProjectImplementation Project
● Random topic suggestions

– Your own serious / fun / pet / study / research project
● Some non-trivial connection to operating systems required

● Can be an extension of a previous work (e.g. your winter semester assignment) or something you plan to extend in the 
future (e.g. your master thesis)

– But obviously not something you have already finished

– Targeted contribution to an (open source) operating system project
● Tip: Many open source projects have a list of Google Summer of Code projects

● Pro tip: https://www.helenos.org :)

● Pro tip from my employer: https://www.l4re.org :)

– Original implementation of an idea from a research paper
● Could be both rewarding and treacherous

https://www.helenos.org/
https://www.l4re.org/


17

About the LecturerAbout the Lecturer
● Charles University, Faculty of Mathematics and Physics

– MSc. (2005), Ph.D. (2015)

– Researcher at the Department of Distributed and Dependable Systems (2008 – 2017)

– Co-author of the HelenOS microkernel multiserver operating system (since 2004)

● Huawei Technologies

– Senior Research Engineer at the Munich Research Center (2017 – 2019)

– Principal Research Engineer and co-founder at the Dresden Research Center (2019 – 2021)

– Contributing to the HarmonyOS NEXT microkernel-based operating system

● Kernkonzept GmbH

– Senior Software Engineer (since 2021)

– Contributing to the L4Re microkernel-based operating system framework

https://d3s.mff.cuni.cz/
https://www.helenos.org/
https://en.wikipedia.org/wiki/HarmonyOS#HarmonyOS_NEXT
https://www.kernkonzept.com/
https://l4re.org/


18

About Kernkonzept

Owner-
managed

Founded
2012

Spin-offfrom
TUDresden

International
teamof35

Wide
experience
since1996

Continuously
growing

Closeto
researchand
innovative

Operating
system

specialists 

Locatedin
Dresden,
Germany



 

Kernkonzept Markets



 



21

Kernkonzept CustomersKernkonzept Customers
● infodas

– SDoT Security Gateway and other products
● German & NATO SECRET classification

● genua

– Secure laptop, Cyber data diode
● BSI approval for NATO & EU SECRET

● Elektrobit (wholly-owned subsidiary of Continental)

– EB Corbos Hypervisor
● Bare-metal mixed-criticality hypervisor for automotive systems (targeting Adaptive AUTOSAR)

● Actually running in Volkswagen ID.3 and other cars

● Electrolux, Airbus, IABG, etc.

40

https://www.infodas.com/en/
https://www.genua.eu/
https://www.elektrobit.com/
https://www.continental.com/en/


22

L4Re in a NutshellL4Re in a Nutshell

L4ReMicrokernel/Hypervisor

Hardware

L4ReRun-timeEnvironment

Native driver Native task

uvmm

L4Linux

Non-critical 
VM

Critical
VM

Privileged
mode

Non-privileged
mode

RTOSfr
ee

uvmm ...



 
Recommendations
1.1



24

Please interact



25

Make Sure This Course Is Useful to Make Sure This Course Is Useful to YouYou
● Not possible to cover every topic in perfectly detail

– Let us focus on the topics that you care about

– Let us skip parts that you already understand

● Ask questions

– There is no point in listening to something that you do not understand

– There are really no stupid questions

● Discuss

– Despite best effort, everyone is biased

– This course is not about dogmas, but about nuances

– Think about why and how would you do things differently



26

Please take notes



27

Taking Notes HelpsTaking Notes Helps
● Passive listening does not lead to understanding

– Everything seems reasonable and logical while listening (obviously)

– Nobody remembers all the details from a 90-minute lecture (especially after a few days)

– Reformulating what you hear into concise notes helps detect that you might be missing something

● Slides do not contain all the information

● Pro tips

– Explain what you have learned to somebody else (based on your notes)
● Talk to a friend, roommate, etc.

– Actively force yourself to ask a question
● Even if everything seems clear



28

Please try things out



29

Exploring Is Always Better than WatchingExploring Is Always Better than Watching
● People are generally optimistic

– Have I really understood everything? – Yes, of course!

– Is my current understanding sufficient for a practical application? – Yes, of course!

– Am I still missing some details? – Why should I?

● You can be sure about the points above only if you put them to test

– Experiment with the ideas we talk about
● Create a prototype, look up an actual implementation

– Run the code
● Configure it, tweak it, debug it, extend it

– Try to break it
● Finding a weak spot tests your understanding to the limit



30

Exercise



31

Explore a New Operating SystemExplore a New Operating System

● Managarm
– https://managarm.org
– General-purpose
– Desktop-oriented
– Microkernel-based
– Asynchronous kernel design
– Some degree of Linux compatibility

https://managarm.org/


 



33

Exploration TipsExploration Tips
● Read the available documentation

– At first, do not drown yourself in details
● Just skim it and focus on the key aspects

– Structure of the components of the system
– Languages and tools used
– How to make it work

● Get the sources
– Examine the directory structure

– Look briefly into the build system
● Remember: Not everything that is compiled is necessarily linked together



34

Exploration TipsExploration Tips
● Start from the bottom

– What is the boot protocol?
● What standard boot loader is used?
● Is there a custom (2nd-stage) boot loader?
● Where is the boot entry point?

– Examine the linker script(s)
● What is the memory layout of the kernel?
● Where is the assembly entry point to the kernel?
● Where is the high level language entry point to the kernel?

– Explore the call graph of the kernel from the high level language entry point



35

Exploration TipsExploration Tips
● Go back to the documentation

– Map the structure from the documentation to the sources
– Are there some easily distinguishable / recognizable parts of the kernel?

● Platform-specific vs. platform-neutral code?
● Drivers?
● Support for threads?
● Page table management?
● Syscall handlers?

● Build the sources
– Prepare the build environment according to the documentation
– Run the build
– Run the built image



36

Exploration TipsExploration Tips

● Explore the user space
– What are the components?
– What are the libraries?
– How does a syscall look “from the other side”?
– How is the user experience?
– How to create a simple hello world program?

● Explore the documentation and sources in detail
– What do you like and what do you dislike?



 

Thank you!
Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

