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Operating Systems SpecificsOperating Systems Specifics
● Operating system as a whole

– In principle, a piece of software like any other
● Potentially complex software architecture

– Monolithic (unikernel), layered/stacked (monolithic kernel), component-based (microkernel), etc.

– Less usual properties
● Almost always an open-ended platform

– Application Programming Interface (API)
– Component life cycle management at run time
– Potentially recursive (virtual machines)

● Different criticality and/or privilege levels
– Multiple address spaces

– Application Binary Interface (ABI)
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Operating Systems SpecificsOperating Systems Specifics
● Operating system kernel

– In principle, a program like any other
● In the “steady state”, mostly following data-driven and event-driven model

– Inputs, outputs, events, etc.

– Less usual properties
● Self-supporting its own run time environment

– Chicken-and-egg problem especially during bootstrap
– Peculiar shutdown

– Direct interaction with hardware

– Privileged mode (little to no “safety net” for errors)
● Access into multiple address spaces
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Requirements on the Programming LanguageRequirements on the Programming Language
● Versatility as a “platform builder”

– Interfacing with hardware and firmware
● No limitations regarding the means of the communication (memory access patterns, special 

instructions, etc.)

– Code self-modification

– ABI malleability

– Modularity

● No excessive baggage
– No constructs that just “stand in the way”

– No complex external run time that would require its own major support
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Requirements on the Programming LanguageRequirements on the Programming Language
● Predictability

– Straightforward mapping between language constructs and machine 
code

● Shallow abstractions
● Not too many levels of abstraction

– Also in the time domain
● Especially for real time use cases

● Safety & security
– Ideally fundamental or at least reasonably achievable
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Assembly LanguageAssembly Language

● Language of symbolic machine code instructions
swap:

movslq %esi, %rsi
leaq (%rdi, %rsi, 4), %rdx
leaq 4(%rdi, %rsi, 4), %rax
movl (%rdx), %ecx
movl (%rax), %esi
movl %esi, (%rdx)
movl %ecx, (%rax)
retq

010010000110011111110110
01001000100011010001010010110111
0100100010001101010001001011011100000100
1000101100001010
1000101101110000
1000100101110010
1000100100001000
11000111



swap:
sll $a1, $a1, 2
addu $a1, $a1, $a0
lw $v0, 0($a1)
lw $v1, 4($a1)
sw $v1, 0($a1)
sw $v0, 4($a1)
jr $ra

00000000000001010010100010000000
00000000101001000010100000100001
10001100101000100000000000000000
10001100101000110000000000000100
10101100101000100000000000000100
10101100101000110000000000000000
00000011111000000000000000001000


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Assembly LanguageAssembly Language

● Language of symbolic machine code instructions
swap:

movslq %esi, %rsi
leaq (%rdi, %rsi, 4), %rdx
leaq 4(%rdi, %rsi, 4), %rax
movl (%rdx), %ecx
movl (%rax), %esi
movl %esi, (%rdx)
movl %ecx, (%rax)
retq

010010000110011111110110
01001000100011010001010010110111
0100100010001101010001001011011100000100
1000101100001010
1000101101110000
1000100101110010
1000100100001000
11000111



swap:
sll $a1, $a1, 2
addu $a1, $a1, $a0
lw $v0, 0($a1)
lw $v1, 4($a1)
sw $v1, 0($a1)
sw $v0, 4($a1)
jr $ra

00000000000001010010100010000000
00000000101001000010100000100001
10001100101000100000000000000000
10001100101000110000000000000100
10101100101000100000000000000100
10101100101000110000000000000000
00000011111000000000000000001000



opcodeinstruction mnemonics

register name

constant

displacement

dereference
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Assembly LanguageAssembly Language

● Maximal versatility, predictability and almost no baggage
– Everything that a machine code can express can assembler express

● Unknown instructions can be “typed in” as arbitrary bytes

– Modularity mechanisms same as in C
● External symbols and linking

– Platform-specific
– Minimal abstractions
– ABI (almost) completely customizable and optimizable
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Assembly LanguageAssembly Language
● Specific assembler implementations might provide a relatively rich programming features

– Symbolic labels for memory locations
● Usable as branch targets, variables, values in expressions, etc.

– Synthetic instructions

– Directives
● Compiler configuration

● Instruction and data modifiers

● Modular compilation (sections, external labels, etc.)

– Constants and (compile-time) expressions

– Subroutines, macros (with compile-time control flow)

– Comments
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Assembly LanguageAssembly Language

● Modularity● Modularity

assembler.s .o

assembler.s .o

assembler.s .o

linker binary
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Assembly LanguageAssembly Language

● Modularity● Modularity

assembler.s .opreprocessor.h

.S

.h
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Assembly LanguageAssembly Language

● Limitations
– Typically single-pass compilation

● Inability to modify already generated output
– Output addresses within a module can only increment
– Worked around by outputting into different sections

– Undefined symbolic addresses are considered external
(to be filled in by the linker)

● Potentially pessimistic code due to unknown address sizes
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Assembly LanguageAssembly Language
● Drawbacks

– Very narrow portability
● Not just ISA-specific, but typically ISA variant-specific, CPU model-specific, etc.

– Verbosity
● Especially on RISC architectures

– Extremely poor maintainability
● In principle, there could be code inspection, refactoring, completion, etc.

– Writing code in assembly is a niche nowadays
– Some advanced features are integrated in reverse engineering tools, but hardly in modern IDEs

– Poor performance of larger pieces of code
● On modern superscalar CPUs, humans outperform optimizing compilers only on specific 

small and tight routines (e.g. direct hardware manipulation, memory copying, etc.)
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Assembly NowadaysAssembly Nowadays
● Demoscene (e.g. 256 B, 4 KiB demos)

● Hobbyists (e.g. MenuetOS, KolibriOS)

● Routines requiring tight hardware control

– Firmware DRAM initialization (code running in CPU cache only)

– Bootstrap code, context & mode switching routines (no usable stack)

– Kernel memory copying between address spaces

● Fixups in case of a page fault require stack usage discipline

– Code resilient to timing side channels

– Entry parts of interrupt handling, virtualization, etc.

● Substitution for missing compiler intrinsics (inline assembly)

– Atomics and synchronization

– Tight inner loops, SIMD routines
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C LanguageC Language
● Originally designed for implementing Unix utilities

– Later used to reimplement the Unix kernel

● A standalone C program requires very little run time support
– Memory for the code

– Memory for the static data (global variables)

– Memory for the stack

– Well-defined entry context
● Instruction pointer, stack pointer and a few other platform-specific registers

● In the freestanding environment, the existence of the standard C library in not 
assumed
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C LanguageC Language
● Function arguments passed as values (generally on the stack or in registers)

● Single lexical scope of functions

● Pointer arithmetic, memory model (originally quite rudimentary)

● Ad hoc run-time polymorphism

● Basic modularity, conditional compilation and meta-programming

● Abstract machine

– Language constructs and operations

– Static (but weakly enforced) type system

– Maps in a straightforward way to most ISAs while providing solid portability
● Caution: Definitively not a 1:1 mapping
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C LanguageC Language
● Used to be synonymous for “the system programming language”

– Almost universally adopted in 1980s and early 1990s for system-level 
software (firmware, kernels, core OS components and libraries)

● Gradually replaced assembler
– One of the most popular programming languages in general

● Actually used for the majority of non-system applications
– Despite generally poor support for strings, generic data types, etc.
– Almost universal (theoretical) portability

– Not without adverse effects
● Arguably a major cause of the dire state of safety and security of many software 

stacks
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C LanguageC Language
● Problematic aspects

– C preprocessor
● Header inclusion is a poor replacement for proper module support

– Boilerplate include guards

● Conditional compilation and macro expansion does not understand or respect the language syntax
– Overuse of macros often leads to a “DSL from hell”

– Obsoleted features / Should be obsoleted features
● Functions without a declaration assume to have a variadic argument list and the int return type

● Strange operator precedence (e.g. bitwise operators vs. comparison)

● Bitfields with implementation-specific memory layout

– Type safety of variadic functions

– Misunderstanding of the volatile modifier (not usable as universal atomic)
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C LanguageC Language
● Undefined behavior

– Caution: Not “unspecified” or “implementation defined” behavior
● Abstract machine in an unknown state   Entire program behavior undefined
● Compiler is allowed to assume that well-formed code does not contain undefined behavior

– Could be used to drive the compiler optimization (assume macro)

– Examples
● Accessing an uninitialized variable
● Division by zero (or other mathematically undefined operation)
● Signed integer overflow
● Bitwise shifts larger than the type bit width (or negative)
● Modifying an object between two sequence points more than once
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C LanguageC Language
● Data race
● Not returning a value from a non-void function
● Spatial memory safety violation

– Out of bounds memory accesses
– Dereferencing a NULL pointer
– Modifying a string literal or constant object

● Temporal memory safety violation
– Accessing local variables outside their scope
– Use-after-free, double free

● Strict aliasing violation
● Alignment violation
● Infinite loop without a side-effect

– Not just empty loop
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C LanguageC Language

● Undefined behavior

unsigned int add_inc(unsigned int *a, unsigned int *b)
{

return (*a)++ + (*b)++;
}
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C LanguageC Language

● Undefined behavior
typedef struct {

unsigned int uid;
} user_t;

int elevate(void)
{

user_t *user = get_privileged_used();
unsigned int uid = user->uid;

if (user == NULL)
return -EINVAL;

grant_access(uid);
return 0;

}
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C LanguageC Language

● Undefined behavior
#define SIZE 42

unsigned int data[SIZE];

bool present(unsigned int value)
{

for (unsigned int i = 0; i <= SIZE; i++) {
if (data[i] == value)

return true;
}

return false;
}



31

Response to C ShortcommingsResponse to C Shortcommings
● Coding guidelines & standards

– MISRA C
● Motor Industry Software Reliability Association
● De facto requirement for safety certifications
● Set of mandatory, required and advisory guidelines

– Each deviation from a required guideline must be documented with a rationale
● Mixes genuinely useful rules with some rather questionable

– Rule 15.5: A function should have a single point of exit at the end
● Very hard to be applied to a dynamic operating system

– Rule 17.2: Functions shall not call themselves, either directly or indirectly
– Rule 21.3: The memory allocation and deallocation functions shall not be used
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Response to C ShortcommingsResponse to C Shortcommings

● Coding guidelines & standards
– CERT C

● Computer Emergency Response Team Coordination Center (CERT/CC) at 
Software Engineering Institute (SEI)

● https://wiki.sei.cmu.edu/confluence/display/c
● Broader target than MISRA C

– Some focus on security
● Classification of rules

– Severity, likelihood, remediation cost, priority, etc.
● Assessment of detection tools

https://wiki.sei.cmu.edu/confluence/display/c
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C++ LanguageC++ Language
● Originally an object-oriented extension of C (“C with Classes”)

– Easy interoparability with C (although not a strict superset)

● Higher-level abstractions for existing C constructs

– Pointers  References

– Macros  Templates, constant expressions

– Boolean as integer  Dedicated boolean type

– Error return values  Exceptions

– Manual encapsulation & polymorphism  Classes, overloading, default arguments

– Function pointers  Lambda expressions

– Dynamic memory management integrated into the language

– Stricter type system, concepts
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C++ LanguageC++ Language
● Goal of providing abstractions at reasonable run-time cost

– Zero cost if the abstraction is not actually used
● Language aspects considered problematic for system-level use

– Unpredictable cost of abstractions (memory, time)
● The freestanding mode still assumes the presence of the run-time library and a minimal standard 

library
– Required for static constructors and destructors

● Run-time type identification has memory overhead even if not used
– Required for exceptions, typeid, dynamic_cast

● Stack unwinding and dynamic memory allocation on throwing exceptions
● STL considered bloated

– Disabling or avoiding those aspects is possible by many compilers, but the resulting language 
might be non-conforming
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C++ LanguageC++ Language
● Custom implementation of standard features

– Static constructors and destructors, deferred constructors

– Smart pointers (unique_ptr)

– Tagged dynamic casting (limited to downcasting)

– Type traits

– Containers

– Replacement of virtual methods (inheritance) by compile-time composition of alternatives

● Useful system-level constructs
– Guarded objects

– Better type safety (e.g. type-safe integers)



 

Source: Matfyz memes that will make you ČVUT
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C++ LanguageC++ Language
● Problematic aspects

– Templates are the new macros
● Templates from hell

– Operator overloading as an elegant obfuscation

– Almost all C undefined behavior is still with us
● Plus some more

– delete[] on a single object, delete on an array
– All sorts of class shenanigans (incorrect casting, calling methods before all base 

constructors, calling virtual methods from constructor)
– Extending the std namespace
– Infinite template recursion
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Rust LanguageRust Language
● Goal: System-level language akin to C, but designed in 2010s

– Key requirements
● Relative simplicity (no class inheritance, no template meta-programming)

● Straightforward mapping to current hardware (two’s complement, fixed byte size, etc.)

● Lean run time (but good support for Unicode strings)

● Explicit (but maintainable) resource and memory management

– Avoiding the major shortcomings of C / C++
● No surprising undefined behavior

● Compile-time memory, type and concurrency safety

– Certainly not the first attempt on “modern C”
● D, Nim, Go, V, etc.

– Novel approach: Two languages in one (safe + unsafe)
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Rust LanguageRust Language
● Curly-bracket syntax with familiar control flow keywords and operators

● Fixed-sized integer and float types

● Unicode character and static strings built-in types

● Tuple built-in type, bottom/never type (no-return functions)

● Non-null references and raw (unsafe) pointers

● Structures and tagged/disjoint unions with methods

– Memory layout is not predefined

● Pattern matching

● Ranges

● Statements as expressions (implicit function return)
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Rust LanguageRust Language
● Function argument type polymorphism
● Ad hoc type polymorphism using traits
● Immutable variables by default, type inference
● Mandatory initialization
● Option type (nullable) and Return type (error handling) as library constructs
● Memory and data race safety via compile-type lifetime tracking

– Every valid object has exactly one owner
– References exist only for valid objects
– A single mutable reference exists only if no immutable references exist
– Destructors for resource management
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Rust LanguageRust Language
● Unsafe mode

– For implementing system-level features
● Violating ownership rules
● Dereferencing raw pointers
● Type casting (punning)
● Volatile memory access
● Intrinsics, inline assembly

– Assumptions of the safe mode hold after the unsafe block ends
● Otherwise it is undefined behavior

● Other cases of undefined behavior
– Typically diagnosed with a run-time panic
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Rust LanguageRust Language
● Macros

– Declarative macros
● Expansion using pattern matching
● Similar to other macro languages, but core language concept

– Procedural macros
● Compile-time modification of the input tokens
● Code generation

● Modularity and package management
● Language features versioning

– Still, ongoing language development and the approach to the supply chain can be problematic

● C interoperability using bindgen
● no-std environment

– Still needs some unstable/custom run time parts (e.g. alloc)

– Practically on a similar level as C++
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Other Systems LanguagesOther Systems Languages
● Forth

– OpenBoot, Open Firmware

● C#, Spec#, Sing#, M#

– Singularity, Midori

● Pascal, Modula(-2), Oberon

– Legacy Apple OSes, Oberon

● Ada, SPARK

– Muen

● (BBC) Basic

– Legacy RISC OS

● Smalltalk, Objective-C

● Zig, Jakt, Hare, V



 

Thank you!
Questions?
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