
 

Advanced Operating Systems
Summer Semester 2024/2025

Martin Děcký



 
Programming 
Languages and 
Techniques

2



3

Levels of AbstractionLevels of Abstraction

Computer / Human interface

Task business logic

Libraries

Operating system

Instruction set architecture

Microarchitecture

Logical gates

Transistors

HW/SW interface

So
ft

w
ar

e

H
ardw

are

A
pp

lic
at

io
n 

   
  

A
bs

tr
ac

tio
n 

le
ve

l



4

Operating Systems SpecificsOperating Systems Specifics
● Operating system as a whole

– In principle, a piece of software like any other
● Potentially complex software architecture

– Monolithic (unikernel), layered/stacked (monolithic kernel), component-based (microkernel), etc.

– Less usual properties
● Almost always an open-ended platform

– Application Programming Interface (API)
– Component life cycle management at run time
– Potentially recursive (virtual machines)

● Different criticality and/or privilege levels
– Multiple address spaces

– Application Binary Interface (ABI)



 



6

Operating Systems SpecificsOperating Systems Specifics
● Operating system kernel

– In principle, a program like any other
● In the “steady state”, mostly following data-driven and event-driven model

– Inputs, outputs, events, etc.

– Less usual properties
● Self-supporting its own run time environment

– Chicken-and-egg problem especially during bootstrap
– Peculiar shutdown

– Direct interaction with hardware

– Privileged mode (little to no “safety net” for errors)
● Access into multiple address spaces



7

Requirements on the Programming LanguageRequirements on the Programming Language
● Versatility as a “platform builder”

– Interfacing with hardware and firmware
● No limitations regarding the means of the communication (memory access patterns, special 

instructions, etc.)

– Code self-modification

– ABI malleability

– Modularity

● No excessive baggage
– No constructs that just “stand in the way”

– No complex external run time that would require its own major support



8

Requirements on the Programming LanguageRequirements on the Programming Language
● Predictability

– Straightforward mapping between language constructs and machine 
code

● Shallow abstractions
● Not too many levels of abstraction

– Also in the time domain
● Especially for real time use cases

● Safety & security
– Ideally fundamental or at least reasonably achievable



 

Logo by DALL·E 3 via ChatGPT 4o



10

Assembly LanguageAssembly Language

● Language of symbolic machine code instructions
swap:

movslq %esi, %rsi
leaq (%rdi, %rsi, 4), %rdx
leaq 4(%rdi, %rsi, 4), %rax
movl (%rdx), %ecx
movl (%rax), %esi
movl %esi, (%rdx)
movl %ecx, (%rax)
retq

010010000110011111110110
01001000100011010001010010110111
0100100010001101010001001011011100000100
1000101100001010
1000101101110000
1000100101110010
1000100100001000
11000111



swap:
sll $a1, $a1, 2
addu $a1, $a1, $a0
lw $v0, 0($a1)
lw $v1, 4($a1)
sw $v1, 0($a1)
sw $v0, 4($a1)
jr $ra

00000000000001010010100010000000
00000000101001000010100000100001
10001100101000100000000000000000
10001100101000110000000000000100
10101100101000100000000000000100
10101100101000110000000000000000
00000011111000000000000000001000





11

Assembly LanguageAssembly Language

● Language of symbolic machine code instructions
swap:

movslq %esi, %rsi
leaq (%rdi, %rsi, 4), %rdx
leaq 4(%rdi, %rsi, 4), %rax
movl (%rdx), %ecx
movl (%rax), %esi
movl %esi, (%rdx)
movl %ecx, (%rax)
retq

010010000110011111110110
01001000100011010001010010110111
0100100010001101010001001011011100000100
1000101100001010
1000101101110000
1000100101110010
1000100100001000
11000111



swap:
sll $a1, $a1, 2
addu $a1, $a1, $a0
lw $v0, 0($a1)
lw $v1, 4($a1)
sw $v1, 0($a1)
sw $v0, 4($a1)
jr $ra

00000000000001010010100010000000
00000000101001000010100000100001
10001100101000100000000000000000
10001100101000110000000000000100
10101100101000100000000000000100
10101100101000110000000000000000
00000011111000000000000000001000



opcodeinstruction mnemonics

register name

constant

displacement

dereference



12

Assembly LanguageAssembly Language

● Maximal versatility, predictability and almost no baggage
– Everything that a machine code can express can assembler express

● Unknown instructions can be “typed in” as arbitrary bytes

– Modularity mechanisms same as in C
● External symbols and linking

– Platform-specific
– Minimal abstractions
– ABI (almost) completely customizable and optimizable



13

Assembly LanguageAssembly Language
● Specific assembler implementations might provide a relatively rich programming features

– Symbolic labels for memory locations
● Usable as branch targets, variables, values in expressions, etc.

– Synthetic instructions

– Directives
● Compiler configuration

● Instruction and data modifiers

● Modular compilation (sections, external labels, etc.)

– Constants and (compile-time) expressions

– Subroutines, macros (with compile-time control flow)

– Comments



14

Assembly LanguageAssembly Language

● Modularity● Modularity

assembler.s .o

assembler.s .o

assembler.s .o

linker binary



15

Assembly LanguageAssembly Language

● Modularity● Modularity

assembler.s .opreprocessor.h

.S

.h



16

Assembly LanguageAssembly Language

● Limitations
– Typically single-pass compilation

● Inability to modify already generated output
– Output addresses within a module can only increment
– Worked around by outputting into different sections

– Undefined symbolic addresses are considered external
(to be filled in by the linker)

● Potentially pessimistic code due to unknown address sizes



17

Assembly LanguageAssembly Language
● Drawbacks

– Very narrow portability
● Not just ISA-specific, but typically ISA variant-specific, CPU model-specific, etc.

– Verbosity
● Especially on RISC architectures

– Extremely poor maintainability
● In principle, there could be code inspection, refactoring, completion, etc.

– Writing code in assembly is a niche nowadays
– Some advanced features are integrated in reverse engineering tools, but hardly in modern IDEs

– Poor performance of larger pieces of code
● On modern superscalar CPUs, humans outperform optimizing compilers only on specific 

small and tight routines (e.g. direct hardware manipulation, memory copying, etc.)



18

Assembly NowadaysAssembly Nowadays
● Demoscene (e.g. 256 B, 4 KiB demos)

● Hobbyists (e.g. MenuetOS, KolibriOS)

● Routines requiring tight hardware control

– Firmware DRAM initialization (code running in CPU cache only)

– Bootstrap code, context & mode switching routines (no usable stack)

– Kernel memory copying between address spaces

● Fixups in case of a page fault require stack usage discipline

– Code resilient to timing side channels

– Entry parts of interrupt handling, virtualization, etc.

● Substitution for missing compiler intrinsics (inline assembly)

– Atomics and synchronization

– Tight inner loops, SIMD routines



 



 



21

C LanguageC Language
● Originally designed for implementing Unix utilities

– Later used to reimplement the Unix kernel

● A standalone C program requires very little run time support
– Memory for the code

– Memory for the static data (global variables)

– Memory for the stack

– Well-defined entry context
● Instruction pointer, stack pointer and a few other platform-specific registers

● In the freestanding environment, the existence of the standard C library in not 
assumed



22

C LanguageC Language
● Function arguments passed as values (generally on the stack or in registers)

● Single lexical scope of functions

● Pointer arithmetic, memory model (originally quite rudimentary)

● Ad hoc run-time polymorphism

● Basic modularity, conditional compilation and meta-programming

● Abstract machine

– Language constructs and operations

– Static (but weakly enforced) type system

– Maps in a straightforward way to most ISAs while providing solid portability
● Caution: Definitively not a 1:1 mapping



23

C LanguageC Language
● Used to be synonymous for “the system programming language”

– Almost universally adopted in 1980s and early 1990s for system-level 
software (firmware, kernels, core OS components and libraries)

● Gradually replaced assembler
– One of the most popular programming languages in general

● Actually used for the majority of non-system applications
– Despite generally poor support for strings, generic data types, etc.
– Almost universal (theoretical) portability

– Not without adverse effects
● Arguably a major cause of the dire state of safety and security of many software 

stacks



24

C LanguageC Language
● Problematic aspects

– C preprocessor
● Header inclusion is a poor replacement for proper module support

– Boilerplate include guards

● Conditional compilation and macro expansion does not understand or respect the language syntax
– Overuse of macros often leads to a “DSL from hell”

– Obsoleted features / Should be obsoleted features
● Functions without a declaration assume to have a variadic argument list and the int return type

● Strange operator precedence (e.g. bitwise operators vs. comparison)

● Bitfields with implementation-specific memory layout

– Type safety of variadic functions

– Misunderstanding of the volatile modifier (not usable as universal atomic)



 

CC BY-SA 4.0 by Martin Děcký, with the assistance of DALL·E 3 via ChatGPT 4o



26

C LanguageC Language
● Undefined behavior

– Caution: Not “unspecified” or “implementation defined” behavior
● Abstract machine in an unknown state   Entire program behavior undefined
● Compiler is allowed to assume that well-formed code does not contain undefined behavior

– Could be used to drive the compiler optimization (assume macro)

– Examples
● Accessing an uninitialized variable
● Division by zero (or other mathematically undefined operation)
● Signed integer overflow
● Bitwise shifts larger than the type bit width (or negative)
● Modifying an object between two sequence points more than once



27

C LanguageC Language
● Data race
● Not returning a value from a non-void function
● Spatial memory safety violation

– Out of bounds memory accesses
– Dereferencing a NULL pointer
– Modifying a string literal or constant object

● Temporal memory safety violation
– Accessing local variables outside their scope
– Use-after-free, double free

● Strict aliasing violation
● Alignment violation
● Infinite loop without a side-effect

– Not just empty loop



28

C LanguageC Language

● Undefined behavior

unsigned int add_inc(unsigned int *a, unsigned int *b)
{

return (*a)++ + (*b)++;
}



29

C LanguageC Language

● Undefined behavior
typedef struct {

unsigned int uid;
} user_t;

int elevate(void)
{

user_t *user = get_privileged_used();
unsigned int uid = user->uid;

if (user == NULL)
return -EINVAL;

grant_access(uid);
return 0;

}



30

C LanguageC Language

● Undefined behavior
#define SIZE 42

unsigned int data[SIZE];

bool present(unsigned int value)
{

for (unsigned int i = 0; i <= SIZE; i++) {
if (data[i] == value)

return true;
}

return false;
}



31

Response to C ShortcommingsResponse to C Shortcommings
● Coding guidelines & standards

– MISRA C
● Motor Industry Software Reliability Association
● De facto requirement for safety certifications
● Set of mandatory, required and advisory guidelines

– Each deviation from a required guideline must be documented with a rationale
● Mixes genuinely useful rules with some rather questionable

– Rule 15.5: A function should have a single point of exit at the end
● Very hard to be applied to a dynamic operating system

– Rule 17.2: Functions shall not call themselves, either directly or indirectly
– Rule 21.3: The memory allocation and deallocation functions shall not be used



32

Response to C ShortcommingsResponse to C Shortcommings

● Coding guidelines & standards
– CERT C

● Computer Emergency Response Team Coordination Center (CERT/CC) at 
Software Engineering Institute (SEI)

● https://wiki.sei.cmu.edu/confluence/display/c
● Broader target than MISRA C

– Some focus on security
● Classification of rules

– Severity, likelihood, remediation cost, priority, etc.
● Assessment of detection tools

https://wiki.sei.cmu.edu/confluence/display/c


 



34

C++ LanguageC++ Language
● Originally an object-oriented extension of C (“C with Classes”)

– Easy interoparability with C (although not a strict superset)

● Higher-level abstractions for existing C constructs

– Pointers  References

– Macros  Templates, constant expressions

– Boolean as integer  Dedicated boolean type

– Error return values  Exceptions

– Manual encapsulation & polymorphism  Classes, overloading, default arguments

– Function pointers  Lambda expressions

– Dynamic memory management integrated into the language

– Stricter type system, concepts



35

C++ LanguageC++ Language
● Goal of providing abstractions at reasonable run-time cost

– Zero cost if the abstraction is not actually used
● Language aspects considered problematic for system-level use

– Unpredictable cost of abstractions (memory, time)
● The freestanding mode still assumes the presence of the run-time library and a minimal standard 

library
– Required for static constructors and destructors

● Run-time type identification has memory overhead even if not used
– Required for exceptions, typeid, dynamic_cast

● Stack unwinding and dynamic memory allocation on throwing exceptions
● STL considered bloated

– Disabling or avoiding those aspects is possible by many compilers, but the resulting language 
might be non-conforming



36

C++ LanguageC++ Language
● Custom implementation of standard features

– Static constructors and destructors, deferred constructors

– Smart pointers (unique_ptr)

– Tagged dynamic casting (limited to downcasting)

– Type traits

– Containers

– Replacement of virtual methods (inheritance) by compile-time composition of alternatives

● Useful system-level constructs
– Guarded objects

– Better type safety (e.g. type-safe integers)



 

Source: Matfyz memes that will make you ČVUT



38

C++ LanguageC++ Language
● Problematic aspects

– Templates are the new macros
● Templates from hell

– Operator overloading as an elegant obfuscation

– Almost all C undefined behavior is still with us
● Plus some more

– delete[] on a single object, delete on an array
– All sorts of class shenanigans (incorrect casting, calling methods before all base 

constructors, calling virtual methods from constructor)
– Extending the std namespace
– Infinite template recursion



 



40

Rust LanguageRust Language
● Goal: System-level language akin to C, but designed in 2010s

– Key requirements
● Relative simplicity (no class inheritance, no template meta-programming)

● Straightforward mapping to current hardware (two’s complement, fixed byte size, etc.)

● Lean run time (but good support for Unicode strings)

● Explicit (but maintainable) resource and memory management

– Avoiding the major shortcomings of C / C++
● No surprising undefined behavior

● Compile-time memory, type and concurrency safety

– Certainly not the first attempt on “modern C”
● D, Nim, Go, V, etc.

– Novel approach: Two languages in one (safe + unsafe)



41

Rust LanguageRust Language
● Curly-bracket syntax with familiar control flow keywords and operators

● Fixed-sized integer and float types

● Unicode character and static strings built-in types

● Tuple built-in type, bottom/never type (no-return functions)

● Non-null references and raw (unsafe) pointers

● Structures and tagged/disjoint unions with methods

– Memory layout is not predefined

● Pattern matching

● Ranges

● Statements as expressions (implicit function return)



42

Rust LanguageRust Language
● Function argument type polymorphism
● Ad hoc type polymorphism using traits
● Immutable variables by default, type inference
● Mandatory initialization
● Option type (nullable) and Return type (error handling) as library constructs
● Memory and data race safety via compile-type lifetime tracking

– Every valid object has exactly one owner
– References exist only for valid objects
– A single mutable reference exists only if no immutable references exist
– Destructors for resource management



43

Rust LanguageRust Language
● Unsafe mode

– For implementing system-level features
● Violating ownership rules
● Dereferencing raw pointers
● Type casting (punning)
● Volatile memory access
● Intrinsics, inline assembly

– Assumptions of the safe mode hold after the unsafe block ends
● Otherwise it is undefined behavior

● Other cases of undefined behavior
– Typically diagnosed with a run-time panic



44

Rust LanguageRust Language
● Macros

– Declarative macros
● Expansion using pattern matching
● Similar to other macro languages, but core language concept

– Procedural macros
● Compile-time modification of the input tokens
● Code generation

● Modularity and package management
● Language features versioning

– Still, ongoing language development and the approach to the supply chain can be problematic

● C interoperability using bindgen
● no-std environment

– Still needs some unstable/custom run time parts (e.g. alloc)

– Practically on a similar level as C++



45

Other Systems LanguagesOther Systems Languages
● Forth

– OpenBoot, Open Firmware

● C#, Spec#, Sing#, M#

– Singularity, Midori

● Pascal, Modula(-2), Oberon

– Legacy Apple OSes, Oberon

● Ada, SPARK

– Muen

● (BBC) Basic

– Legacy RISC OS

● Smalltalk, Objective-C

● Zig, Jakt, Hare, V



 

Thank you!
Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

