Summer Semester 2024/2025

Martin Décky

3

Memory and Resource
Management

Physical Memory Myths

Random access performance seems to be O(1) in time units

— Inreality it is closer to O(y/n)
* Where n is the size of the working set

* Performance effects of the cache hierarchy

There is a canonical physical address space

— Different views of the physical address space
e Local APIC and SMM on x86, secure/non-secure TrustZone on ARM

* Embedding of the I/O address space into the MMIO address space on x86

— Completely disjoint address spaces

e No central interconnect, but a network of nodes and address translations

Source: imgflip.com

i CPU Power

CAM, PMC,
12C, SPI,
DMIC,

Mailboxes, GPIO

Semaphore,
Config Reg,

CPU switch fabric (Coherent) CoreSight Sys Config Ithﬁ;rég?
GFIO Fuses,

SPE, SCE PWFM

sabipug gadv

Cortex-R5 BPMP

General

purpose
DA

safipug adv

XUsB

Cortex-A9 AFE ehAVE,
Audio Processor, UFS,

Audio 10
I

128
|| cupa l
|| Cores ores csl video |[JPEG |[Security
] camera § decode TSECs
input

Memory Controller ' A—

MSS Backbone (Memory fabric and arbitration)

NN waysig

64/128b
LPDDR4

Source: Roscoe T.: It's Time for Operating Systems to Rediscover Hardware, Joint Keynote Address at USENIX ATC '21 / OSDI '21,

https://people.inf.ethz.ch/troscoe/pubs/2021-07-16-OSDIKeyNote-Handout.pdf

System Memory Map M4 Memory Map
0x3722 0000 0x4162 0000

CM4 Bridge

LPUART PPB (M4 Private)

Figure 2. Subset of the NXP i MX8 memory layout. The
LPUART is accessed using a different addresses from the M4
cores, the >2GiB memory is only accessible from the A35
cores, the PPB is only reachable from the M4 cores.

Source: Achermann R., Cock D., Haecki R., Hossle N., Humbel L., Roscoe T., Schwyn D.:

Generating Correct Initial Page Tables from Formal Hardware Descriptions,

In the Proceedings of the 11" Workshop on Programming Languages and Operating Systems (PLOS),
ACM SIGOPS 28" Symposium on Operating Systems Principles (SOSP), 2021,

https://retoachermann.ch/static/papers/achermann-2021-gcip.pdf

Non-Uniform Memory Access (NUMA)

Explicitly exposed hardware topology
~— Processing units, cores, packages
~ NUMA nodes (directly byte-addressable memory)

— Caches

®* Transparent cache coherency (ccNUMA)
~— MSI, MESI, MESIF, MOSI, MOESI, Dragon, Firefly protocols
~ Directory-based cache coherency

— Buses and I/O devices

Guiding heuristics for placing execution near its working set

~— numactl, libnuma

Machine (1487GE total)

Package L#0

L3 (2BMEB)

Groupd

MemCache (36GE)

NUMANode L#0 P#0 (370GEB)

Groupl

MemCache (96GB)

NUMANDde L#1 P#2 (372GE)

Core L#11

PU L#22
P#6&

Package L#1

Groupd
MemCache (96GEB)

NUMANode L#2 P#1 (372GB)

ooo
10x total

Groupl
MemCache (96GB)

NUMAMNode L#3 P#3 (372GE)

ooo
10x total

Device Virtual Memory

Mapping of device-visible addresses to bus-visible addresses

— Similar purpose to software virtual memory
* |solation (i.e. safety, security)
* Mitigating fragmentation (i.e. scatter-gather functionality)

* Mitigating address range issues

— Integrated in the device DMA engine
* Graphics Address/Aperture Remapping Table

- Separate IOMMU

* Device memory paging

* Usually also implementing interrupt remapping

IOMMU

AMD-Vi, ARM SMMU
Intel VT-d

— Usually located in the peripheral interconnect (a.k.a. north bridge)

— Address space is usually associated with a protection domain
* Endpointis usually associated with a source ID
* Data structure that maps source IDs to protection domains

* Memory mapping using hierarchical page tables
— First-stage translation page tables essentially equivalent to the CPU page tables

— Second-stage translation for hypervisor, with nested first & second-stage translation
— Device TLB for translation caching, other caches

- ACPI DMAR (DMA Remapping Reporting) table

Physical Memory Management

Zones

— Continuous address ranges with specific properties
* Available, reserved, firmware, kernel code/data, etc.
* Logical properties
- E.g.<1MiB, < 16 MiB, < 4 GIB on x86
— Allocations
* Tracking of used frames and their owner

* Bitmaps, free lists, buddy allocation, etc.

Capabilities

Motivation

— Universal and pure kernel mechanism for resource management
* No specific management policy in the kernel
* Policy decision delegated to user space

* Delegation (granting) of authority over resources from the original
owner to other parties

— Including granting revocation

Capabilities Terminology

Capability
~ Object instance representing (identifying) a specific resource

Kernel object representing a kernel-managed resource

Kernel proxy object identifying a user-managed resource

User space object representing a user space resource

Capability reference
Unforgeable identifier (handle) to a capability

* Possibility to restrict permissions (e.g. permissible operations) and identify ownership

Capability space

Address space of capability references

* Typically associated with a task

Capabilities as local identifiers within their namespace

D3
Capabilities Put Simply

. file descriptor
read(@, ...); (capability reference)

user space

kernel space

5 3 file descriptor table
(capability space)
. open file
vfs file t s o 5T,

Capability Operations

Invoke
— Execute a “business logic” method on the target object
Clone / Mint
— Create a duplicate capability reference (possibly with restricted permissions)
— Multiple capability references can point to the same capability, but with different permissions
Delegate / Grant
— Pass a duplicate capability reference (possibly with restricted permissions) to a different capability space
— In case of granting, the original ownership is kept
— Only once or recursively
Revoke

— Forcefully removing and granted capability reference from other capability spaces

D3
Capability Delegation

task 1:

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

task 2:

memmove (CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 9);

user space

kernel space

vfs file t

Capability Delegation

task 1:

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove (CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 9);

task 2:

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
7 oo

recvmsg(socket, &msg, 9);

int fd;
memmove (&fd, CMSG_DATA(cmsg), sizeof(fd));

user space

\\ kernel space

vfs file t

D3$

Physical Memory Management

Representing physical memory as capabilities

— Chicken & egg problem: Capabilities, capability spaces, page tables and other
bookkeeping structures require memory for storage (i.e. capabilities)

— Recursive solution: Type hierarchy of capabilities

* Untyped memory capability type
— Representing a range of physical memory
— Initially a single capability representing the entire physical memory

— Untyped capabilities be derived ...
* ..into multiple untyped capabilities (recursively splitting the physical memory)

* ..into capabilities of other types
* Providing the memory for capability storage and bookkeeping
* Providing memory for other kernel objects

Capability Derivation Tree

untyped
cap

10 pages

untyped 2 pages untyped 5 pages untyped 1 page untyped e untyped e

cap cap cap cap cap
typed
untype 1 page untyped 1 page a a frame
cap cap
cap

cnode thread
cap cap

Capability References and Spaces

Naked capabilities

— Capability references identify capabilities directly

* E.g.physical memory addresses identifying untyped memory capabilities

Encapsulated capabilities
— Capability references need to be mapped to capabilities

— Mapping database of capability space
* Fast lookup of capability references (most frequent operation)
* Reasonably fast creation / removal of capability references
* Low memory overhead and fragmentation (sparse capability space)
* Additional metadata (permissions, delegation, granting)

* Possibility for in-line storage of actual kernel objects (up to a certain size)

Capability References and Spaces

Capability space (cspace)
— Directed graph of capability nodes

* Can be implicit (no explicit object representation)
Capability node (cnode)

— Array of capability slots
* Empty slot
* Slot pointing to a specific capability
* Slot pointing to a cnode

— Hierarchical organization of capability nodes

— Radix tree indexing

Hierarchical Capability Mapping Database

d’cyped

cap

thread
cap

page
cap

untyped
cap

00 01 11 cref_t
user space
"" . kernel space
cnode_t (10 bit index) |
cap
\; cnode | untyped cnode_t (10 bit index)
cap cap —

cnode_t (12 bit index)

e S J—

mem_region_t | resource

D3$

Capabilities Example: seL4

Kernel objects

UntypedObject (physical memory range)
TCBObject (thread)

EndpointObject (IPC calls destination)
AsyncEndpointObject (signal recipient)
CapTableObject (array of capabilities)
X86_4K (4 KiB frame)

X86_4M (4 MiB frame)
X86_PageTableObject (2™ level page table)

X86_PageDirectoryObject (1% level page table)

D3
Capabilities Example: seL4

Initial thread cnode ~ ASID pool

content (4096 slots) — Global I/O port capability
- TCB — Global I/O space capability
— cnode — BootInfo frame

— vspace (1°t level page table) — |PC buffer

— Global IRQ controller ~ Security domain capability

— Global ASID controller — Untyped capabilities

Capabilities Example: selL4

Page mapping

// Create a new 4 KiB frame object

selL4 _Untyped Retype(untypedCap@, selL4 X86 4K, 12, cnodeCap, cspaceIndex®, cspaceIndexDeptho,
cspaceSloto, 1);

// Create a new page table (2nd lLevel) object

seL4 _Untyped Retype(untypedCapl, selL4 X86 PageTableObject, 12, cnodeCap, cspacelndexl,
cspaceIndexDepthl, cspaceSlotl, 1);

// Link the page table from the page directory (i.e. 1st Llevel) object (i.e. Vspace)
selL4 X86 PageTable Map(cspaceSlotl, vspaceCap, virtAddr & ~Ox003FFFFF, selL4 X86 Default VMAttributes);

// Map the frame to virtAddr in VSpace
seL4 X86 Page Map(cspaceSlot®, vspaceCap, virtAddr, selL4 AllRights, selL4 X86 Default VMAttributes);

D3
Capabilities Example: selL4

Capability node allocation

// Create a new cnode with 256 slots

seL4 Untyped Retype(untypedCap, selL4 CapTableObject, 8, cnodeCap, cspacelndex, cspaceIndexDepth,
cspaceSlot, 1);

Untyped capability splitting

// Split a 64 KiB region into 8 times 8 KiB regions

seL4 Untyped Retype(untypedCap, selL4 UntypedObject, 13, cnodeCap, cspacelndex, cspaceIndexDepth,
firstCspaceSlot, 8);

Capabilities Example: selL4
~ Strong isolation,

Addr No shared
Space L kernel resources

‘ Addr Addr

Resources fully
delegated, allows
autonomous
operation

\ Resource Manager Resource Manager

RM
Data

init Task = Global Resource Manager

Space Space

Source: Heiser G.: Introduction: Using seL4
Courtesy of Gernot Heiser, UNSW Sydney, CC BY 4.0,
http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

Physical Memory Management Comparison

Traditional

Straightforward AP
High-level abstraction
Portable

Implicit policy
Accounting out of scope

Delegation out of scope

Capability-based

No implicit policy (policy set
completely by the client)

Accounting and delegation
within the scope

Low-level API

Potential abstraction
Inversion

Non-portable

Note on Physical Memory Accounting

Strict memory reservation

Sum of virtual memory sizes <
Sum of physical memory sizes

* Swap space counted as
physical memory

In-bound out-of-memory
condition

More predictable

Potential inefficient resource
usage

Memory overcommit

Sum of resident memory sizes <
Sum of physical memory sizes

* Decoupling memory mapping from
memory allocation

Support for large sparse virtual address
spaces

* Potentially more efficient resource usage
Out-of-bound out-of-memory condition
* Victim finding

Less predictable

Note on Caches

Separate instruction and data caches

- Self-modifying code (N.B.: including code loading)

Virtually-indexed caches
— Mostly used for L1 instruction caches nowadays

- Cache homonyms (same VPN referring to different PFN)
* Flush on each address space switch costly
* Distinct virtual addresses unpractical

* ASID tagging (ASID management by operating system)

— Cache synonyms (different VPN referring to same PFN)
* Shared memory or multiple mappings leading to stale data
* Synonym detection, cache coloring

* Hardware synonym detection

Resource Limiting

Via accounting
— Linux cgroups
* (Hierarchical) groups of processes associated with parameters

— Children typically belong to the same group as parent

— Controllers: cpu, cpuacct, cpuset, freezer, hugetlb, io, memory, perf_event,
pids, rdma

Via visibility
— Namespaces (a.k.a. containers, zones, etc.)

* Non-visible resources are not accessible

Resource Limiting

Via delegation

— Resource trading in Genode
* Delegating resources to children

* Clients paying for server requests (with upgrades)

Child
@
Init '
s @ @

transfer(apiount, 3) .~ |r ’

Core i :
0 o

Thank youl!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

