
 

Advanced Operating Systems
Summer Semester 2024/2025

Martin Děcký



 
Communication
4



Kernel InterfacesKernel Interfaces
● Most kernels have internal structure

– Monolithic kernels: So large that a structure is required

– Microkernels: Not so small that a structure is not helpful

– Subsystems, modules, classes, (hardware) abstraction layers, etc.

– Usual software engineering best practices
● Code is written once, but read many times
● Similar things should be done in similar ways
● Keep it simple / You aren’t gonna need it
● Don’t repeat yourself
● Clear definition of purpose, difficult to misuse, kind to errors



Kernel InterfacesKernel Interfaces
● Hardware abstraction layer

– Interface between platform-specific and platform-independent code
● Primitive data types (machine word), atomics, function pointers
● Thread context (non-volatile / preserved / callee-saved registers), interrupt context (complete machine 

state)
● Address space layouts, ASIDs
● Memory mapping structures
● Interrupt vectoring, exception levels, inter-processor interrupts
● Stack layout (sizes, frame pointer, bias, red zone, tracing)
● Actual platform-specific code (initial bootstrap, kernel entries and exits, atomic operations, memory 

barriers, cache management, assembly code, platform drivers)
● Platform-unification code (e.g. segmentation setup on x86, register stack engine on IA-64 & SPARC)



Kernel InterfacesKernel Interfaces
● Typical subsystems

– Execution management
● CPUs, execution contexts 

(threads), scheduling contexts, 
exceptions, interrupts

– Memory management
● Address spaces (tasks), address 

space areas (paging, TLB, 
ASIDs)

– Time management
● Alarms, timeouts, delays

– Synchronization
● Preemption control, mechanisms, 

primitives

– Syscalls
● Safety / security boundary 

between kernel space / user 
space

– Device drivers

– Utilities
● Run-time configuration, loaders, 

observability, debugging, logging



Kernel InterfacesKernel Interfaces

● Additional microkernel 
subsystems
– Capabilities

● Factories
– User space delegation

● Platform control, 
exceptions, user space 
device drivers

● Additional monolithic 
kernel subsystems
– File systems
– Network stacks
– Power management
– Cryptography



System CallsSystem Calls
● Kernel entry point from user space

– Usually via a dedicated “SYSCALL” instruction
● But other tricks exist (synchronous interrupt, exception, etc.)

● Might encode the syscall number in the instruction

– Similar to a method call of a virtual method table
● The “object” is logically either the entire kernel or a capability

● The “method table” is either a syscall table, a switch or a cascade (of either or both)

– Basic arguments universally passed in GPRs
● Least trouble with validation

● Might not align perfectly with ABI

– Extended arguments usually passed as pointers to user memory
● Need thorough validation (time-of-check to time-of-use races)



System Calls MultiplexingSystem Calls Multiplexing

● None
– Each syscall is a fixed method (more-or-less)

● Capabilities
– Each capability type provide a set of methods (usually fixed)

● ioctls
– Each object instance (e.g. file descriptor, netlink socket) provides 

an arbitrary set of methods or messages



Kernel Object NamingKernel Object Naming
● Capabilities

– Also file descriptors, sockets, handles, virtual addresses, etc.

– Local identifiers of objects

– Implicitly follow the “share nothing” principle
● No extra effort for partitioning required

● Global resources
– Tasks (processes), threads, users, groups, file names, keys, network devices, network addresses, physical 

addresses, etc.

– Explicit partitioning required
● Namespaces, containers, zones, etc.

– Class of global resources that group and isolate global resources
– Non-trivial to achieve a truly “share nothing” state



““Everything Is a File”Everything Is a File”
● Original UNIX paradigm

– N.B.: Mixes two aspects (naming, handling) together

– Resources uniformly identified as file names
● Special files for global “non-files” (e.g. named pipes, device nodes)
● Internal file systems for local “non-files” (e.g. anonymous pipes, sockets)
● Special (synthetic) file systems for exposing run-time data (e.g. /proc, /sys)
● Despite the effort, there were always exceptions (processes, threads, semaphores, etc.)

– Resources handled uniformly
● Basic operations (create, destroy, etc.) and input/output stream of bytes
● Despite the effort, there were always major exceptions

– Special operations for different types of objects
– ioctls as a completely unconstrained API



““Everything Is a File”Everything Is a File”

Source: DALL·E 3 via ChatGPT 4



Everything Is ...Everything Is ...
● … a file (for real)

– Plan 9
● No ioctls, just a fixed set of operations (9P 

protocol)
– Version, Attach, Auth, Walk, Open, New, 

Clunk, Delete, Stat, Read, Write, Flush

– Everything marshalled as streams of bytes

● … an object

– Windows
● Pragmatic approach without sticking to a 

paradigm with exceptions
– “Normal APIs” instead of magic ioctls or 

magic strings
– Often some degree of uniformity might be a 

benefit (e.g. for enumeration)

● … a capability
– Actual local uniform naming (but 

not uniform handling)
● Some uniform handing thanks to 

the generic capability operations

● … a memory area
– All resources represented as 

(demand mapped) virtual memory
● Everything marshalled as byte 

accesses



Device Drivers InterfaceDevice Drivers Interface
● Device drivers are portable (to a degree)

– Platform specifics can be abstracted

● UART driver accesses hardware registers (I/O ports or MMIO)

● PCI device driver accesses PCI configuration space

● USB device driver uses USB controller endpoints

– Host / device endianess, memory models, etc.

– Class drivers

● Supporting many individual devices via a vendor-neutral interface
– USB HID, Mass Storage, UVC, etc.

– Tree of device driver instances

– Follows the hierarchy of devices

● Example: Root driver, platform driver, interrupt controller driver, DMA controller driver, PCI driver, PCI bridge driver, USB controller driver, USB 
class driver, custom USB endpoint driver

– Managing and delegating resources



Device Drivers FrameworkDevice Drivers Framework
● Implementing common parts of device drivers

– Driver instance life cycle
● Discovery (bus enumeration, hot plug/unplug), probing, attaching, detaching

– Resource delegation
● I/O port ranges, MMIO ranges, interrupts, DMA areas, power quotas, etc.
● IOMMU programming

– Device soft state management
● Software mirror of hardware state
● Device initialization, device / bus reset, device surprise hot removal

– Device naming
● Enumeration
● Persistent instance identification

– Level-triggered interrupts vs. user space drivers



Classical IPCClassical IPC
● POSIX signals

– Since UNIX Version 4
– Asynchronous notification sent to a process (thread)

● Similar to level-triggered interrupts (including masking)
● Sender uses the kill(2) syscall

– Run-time exceptions and state changes also cause signals (SIGFPE, SIGSEGV; SIGPIPE, SIGINT, 
SIGSTOP/SIGTSTP, SIGCONT, SIGTRAP)

● Receiver thread is interrupted and a signal handler is executed (installed using signal(2) or 
sigaction(2))

– Race conditions due to nested signals
– Calling non-reentrant functions (e.g. malloc(), printf()) is undefined behavior
– Interruption of some syscalls

● Real-time signals
– Queued, guaranteed sending order



Classical IPCClassical IPC
● Anonymous pipes
● Named pipes

– Persistent uni-directional pipes
● Same API as files (anonymous pipes)
● Pipe identification: File system i-node (bound to a directory entry)
● No identification of senders on the receiver end

– Writes of data larger than PIPE_BUF bytes can be interleaved

– Windows named pipes
● Dedicated namespace (Named Pipe File System \\.\pipe\)
● Non-persistent (removed when all clients close the pipe)
● Anonymous pipes are named pipes with random names



Classical IPCClassical IPC

● UNIX domain sockets
– Reliable bi-directional stream of bytes (akin to TCP), or …
– Unordered unreliable datagrams (akin to UDP), or …
– Reliable ordered stream of datagrams between local processes

● Same API as BSD sockets
● Socket identification: File system i-node (bound to a directory entry or 

to an abstract socket namespace)
● Sending file descriptors (sendmsg(), rescvmsg()) as ancillary data

– Rudimentary capabilities



Classical IPCClassical IPC
● Software shared memory

– POSIX Shared Memory, System V Shared Memory
● Persistent shared memory objects in dedicated namespace

– In Linux, objects created as tmpfs files (usually /dev/shm)

● shm_open(3), mmap(2), munmap(2), shm_unlink(3)
● shmget(2), shmat(2), shmdt(2)

– Memory mapped files
● Shared memory backed by a file (or anonymous memory)
● mmap(2), munmap(2)
● memfd_create(2)

– Removed when no longer referenced
– File sealing (preventing the other party from changing the configuration)



Classical IPCClassical IPC

● Message passing
– Sending

● Synchronous blocking
– Sequential processing waiting for reply

● Synchronous non-blocking
– Sequential processing not waiting for reply

● Asynchronous blocking
– Non-sequential processing waiting for reply

● Asynchronous non-blocking
– Non-sequential processing not waiting for reply



Synchronous Blocking Send Synchronous Non-blocking Send



Asynchronous Blocking Send Asynchronous Non-blocking Send



Classical IPCClassical IPC

● Message passing
– Receiving

● Synchronous blocking
– Explicit rendez-vous waiting for receiving

● Synchronous non-blocking
– Explicit rendez-vous not waiting for receiving

● Asynchronous
– Interrupt-style



Synchronous Blocking Receive Synchronous Non-blocking Receive Asynchronous Receive



Classical IPCClassical IPC

● Message passing
– Addressing

● Symmetrical
– Equivalent peers

● Asymmetrical
– Explicit client (sender) and receiver (server) roles

● Direct
– Peers are explicit endpoints

● Indirect
– Peers are hidden behind message queues



Classical IPCClassical IPC

● Message passing
– Transmitting

● Uniplex
– Peers take turns in communication

● Duplex
– Peers can communicate independently



Classical IPCClassical IPC
● Message passing

– POSIX message queues, System V Message Passing
● Indirect addressing using a message queue (key for msgget(2), i-node for 

mq_open(3))
● msgsnd(2), mq_send(3) asynchronous non-blocking (unless the queue is full)
● msgrcv(2), mq_receive(3) synchronous blocking by default

– Windows Messages
● Symmetrical addressing using window/thread handles
● SendMessage() synchronous blocking, SendMessageCallback(), 

SendNotifyMessage(), PostMessage() asynchronous non-blocking
● GetMessage() synchronous blocking, PeekMessage() synchronous non-blocking



Mach IPCMach IPC
● Prototypical microkernel asynchronous message passing

– Ports
● Receive end-points and associated message queues

– Port rights
● Client capabilities for accessing a port (send, receive, send-once)

– Only a single server can have a receive right

● Each task has an initial set of port rights
– Communicating with the kernel, etc.

– Tagged message structure
● Kernel enforces type correctness
● Port rights can be also passed
● Timeouts



Mach IPCMach IPC
● The origin of the “IPC overhead anxiety”

– IPC overhead of 50 % compared to monolithic UNIX
● With a single UNIX server

● Root causes
– Complex non-optimized kernel-side code

● Tagged data type evaluation, handling of timeouts, etc.
● Dynamic data structures

● But the implementation only uses linked lists
● Excessive cache footprint

– Asynchronicity rarely used for the given workloads
● User space tasks (mostly ported from UNIX) use synchronous communication and blocking I/O

● Nowadays, the anxiety is unfounded

– Bershad has argued 33 years ago that the IPC overhead is increasingly irrelevant [1]
● Real-world performance of computer systems is dominated by other factors

– Liedtke has shown 30 years ago that the IPC overhead is negligeable assuming proper microkernel design [2]



The Era of Synchronous IPCThe Era of Synchronous IPC
● L3 (1988), L4 (1993) by Jochen Liedtke

– IPC overhead of 3 % compared to monolithic UNIX
● With a single UNIX server
● Single IPC call overhead comparable to single syscall overhead in UNIX (approx. 20 times 

faster than on Mach)

– Synchronous blocking IPC
● Explicit client/server rendez-vous and thread migration

– No need for full context switch (address space switch is sufficient)
– No buffering, no scheduling, data passed mostly directly in registers

● Highly target-optimized implementation
– Small working set, cache-friendly code
– No complex algorithms or dynamic data structures



The Era of Synchronous IPCThe Era of Synchronous IPC
● L3 (1988), L4 (1993) by Jochen Liedtke

– Drawbacks
● Non-portable microkernel (by design)

– Poor code readability and maintainability
– Preoccupation with single-threaded performance conflicts with other goals (e.g. 

throughput)
● Design issues of synchronous IPC

– Unresponsive server blocks the client indefinitely
● Originally solved using timeouts (in hindsight not a great solution)

– Asynchronous communication emulated on top of synchronous IPC
● Abstraction inversion anti-pattern (i.e. requires multithreading)

– Scalability suffers on modern massively parallel architectures



The Return of Asynchronous IPCThe Return of Asynchronous IPC
● The best of both worlds

– Synchronous blocking IPC still superior in specific use cases
● Synchronous blocking semantics, single-core communication

– Asynchronous IPC reasonably simple, cache-friendly with fast-path kernel code
● Bounded kernel buffers (additional buffering possible on the client user space side)
● Intelligent bookkeeping data structures (hash tables, trees)
● Simple IPC message structure (only integer payload that fits into registers)

– Additional semantics for memory copying and memory sharing possible
● Possibility to build rich abstractions in user space

– Actors, agents, continuations, futures, promises



Case Study: HelenOS IPCCase Study: HelenOS IPC
● Basic design

– Message passing over asymmetric connections
● Sender

– Asynchronous non-blocking send
– 6-integer payload (1st integer interpreted as interface/method ID)
– Bounded kernel buffers

● Receiver
– Synchronous blocking receive
– Every message paired with a reply (6-integer return value)

● New connections established via existing connections (capabilities)
– Security policy delegated to the connection brokers
– Every client initially connected to the Naming Service (default broker)

– Message forwarding (recursive)

– Kernel events and hardware interrupts converted to IPC messages (no reply)



Case Study: HelenOS IPCCase Study: HelenOS IPC
● Kernel API

– Global method IDs with special semantics
● IPC_M_CONNECTION_CLONE (clone a connection capability from the client to the server)
● IPC_M_CONNECT_TO_ME (establish a callback connection)
● IPC_M_CONNECT_ME_TO (establish a new connection)

– When forwarded, the connection is potentially established to the next receiver
● Broker (Naming Service, Location Service, Device Manager, VFS, etc.) connects the client to the target server

● IPC_M_SHARE_IN / IPC_M_SHARE_OUT (receive/send a shared virtual address space area)
● IPC_M_DATA_READ / IPC_M_DATA_WRITE (receive/send bulk data)
● IPC_M_STATE_CHANGE_AUTHORIZE (update a server state on behalf of a different client)

– Three-way handshake

● IPC_M_PHONE_HUNGUP (connection close)



Case Study: HelenOS IPCCase Study: HelenOS IPC

● User space API
– Async framework

● Goal: Writing single-threaded sequential client code that makes 
effective use of the asynchronous IPC

– User space-scheduled cooperative threads (fibrils)
● Efficient parallelism (preempted only when blocking on waiting for IPC replies)

● Abstracting the low-level IPC connections into sessions
– Each session can have a different threading model

● Abstracting the atomic low-level IPC messages into logical exchanges
– Easily implementing complex communication protocols



Case Study: HelenOS IPCCase Study: HelenOS IPC
async_exch_t *ns_exch = async_exchange_begin(session_ns);

async_sess_t *sess =
async_connect_me_to_iface(ns_exch, INTERFACE_VFS, SERVICE_VFS, 0);

async_exchange_end(ns_exch);

async_exch_t *exch = async_exchange_begin(sess);

ipc_call_t answer;
aid_t req =

async_send_3(exch, VFS_IN_OPEN, lflags, oflags, 0, &answer);

async_data_write_start(exch, path, path_size);

async_exchange_end(exch);

// Do some other useful work in the meantime

sysarg_t rc;
async_wait_for(req, &rc);

if (rc == EOK)
fd = (int) IPC_GET_ARG1(answer);



Networking in Operating SystemsNetworking in Operating Systems

● Socket abstraction
– Communication endpoint abstraction

● In case of IP: [protocol, address, port]
– Address and port might be implicit or wildcard on the API level
– Listening socket vs. accepting socket

● In case of Berkeley API: Socket descriptor as file descriptor
– Other competing APIs (e.g. STREAMS) almost disappeared

● Connection-oriented sockets: Socket pair
– In case of IP: [protocol, source address, source port, destination address, 

destination port]



Networking in Operating SystemsNetworking in Operating Systems

● Stacking and encapsulation
– RFC 3439: Layering considered harmful

Data

UDP
data

UDP
header

IP
header

Frame
header

Frame
footer

Link

Internet

Transport

Application

IP data

Frame data



Networking in Operating SystemsNetworking in Operating Systems
● Breaking layering

– Hardware off-loading
● Checksum calculation, pre-parsing and hashing

– NIC already touching each octet anyway

– XDP (eXpress Data Path)
● Early eBPF packet hook (before any networking stack)

– Raw data inspection

● Possibility for hardware off-loading

– Packet descriptor
● Structure describing packet data & metadata

– Pointers to various fields
● start, size: Pointing to the raw buffer with focus on current headers



Networking in Operating SystemsNetworking in Operating Systems
● Performance considerations

– DMA scatter-gather into TX/RX ring buffers
● Packet sizes and page sizes are not divisible
● Header pushing / popping is not necessarily fixed (IPv6 header chaining)

– Linear segment with headroom (zero-copy if possible)
– Non-linear segments

– Interrupt coalescing
● Throughput vs. latency

– Explicit polling architecture
– Adaptive polling under heavy load
– Flow aggregation

– Deferred interrupts



Networking in Operating SystemsNetworking in Operating Systems
● Performance considerations

– TCP state machine
● Real-time timeouts
● Local buffering vs. congestion control

– Original approach: Large RX buffers increase throughput
● Increase data latency, but also signaling latency

– Current approach: Latency-bound RX buffers
● Better queuing discipline

– Shared resources
● Flow caches, defragmentation buffers

– Remotely exploitable

● Global quotas, zero copy
– Locally exploitable



ReferencesReferences
[1] Bershad B. N.: The Increasing Irrelevance of IPC Performance for Micro-Kernel-Based Operating Systems, in 

Proceedings of the Workshop on Micro-Kernels and Other Kernel Architectures, USENIX, 1992, 
https://dl.acm.org/doi/10.5555/646405.692226

[2] Liedtke J.: On Micro-Kernel Construction, in Proceedings of the 15th ACM Symposium on Operating Systems 
Principles (SOSP), ACM, 1995, https://dl.acm.org/doi/10.1145/224056.224075

https://dl.acm.org/doi/10.5555/646405.692226
https://dl.acm.org/doi/10.1145/224056.224075


 

Thank you!
Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

