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Kernel InterfacesKernel Interfaces
● Most kernels have internal structure

– Monolithic kernels: So large that a structure is required

– Microkernels: Not so small that a structure is not helpful

– Subsystems, modules, classes, (hardware) abstraction layers, etc.

– Usual software engineering best practices
● Code is written once, but read many times
● Similar things should be done in similar ways
● Keep it simple / You aren’t gonna need it
● Don’t repeat yourself
● Clear definition of purpose, difficult to misuse, kind to errors



Kernel InterfacesKernel Interfaces
● Hardware abstraction layer

– Interface between platform-specific and platform-independent code
● Primitive data types (machine word), atomics, function pointers
● Thread context (non-volatile / preserved / callee-saved registers), interrupt context (complete machine 

state)
● Address space layouts, ASIDs
● Memory mapping structures
● Interrupt vectoring, exception levels, inter-processor interrupts
● Stack layout (sizes, frame pointer, bias, red zone, tracing)
● Actual platform-specific code (initial bootstrap, kernel entries and exits, atomic operations, memory 

barriers, cache management, assembly code, platform drivers)
● Platform-unification code (e.g. segmentation setup on x86, register stack engine on IA-64 & SPARC)



Kernel InterfacesKernel Interfaces
● Typical subsystems

– Execution management
● CPUs, execution contexts 

(threads), scheduling contexts, 
exceptions, interrupts

– Memory management
● Address spaces (tasks), address 

space areas (paging, TLB, 
ASIDs)

– Time management
● Alarms, timeouts, delays

– Synchronization
● Preemption control, mechanisms, 

primitives

– Syscalls
● Safety / security boundary 

between kernel space / user 
space

– Device drivers

– Utilities
● Run-time configuration, loaders, 

observability, debugging, logging



Kernel InterfacesKernel Interfaces

● Additional microkernel 
subsystems
– Capabilities

● Factories
– User space delegation

● Platform control, 
exceptions, user space 
device drivers

● Additional monolithic 
kernel subsystems
– File systems
– Network stacks
– Power management
– Cryptography



System CallsSystem Calls
● Kernel entry point from user space

– Usually via a dedicated “SYSCALL” instruction
● But other tricks exist (synchronous interrupt, exception, etc.)

● Might encode the syscall number in the instruction

– Similar to a method call of a virtual method table
● The “object” is logically either the entire kernel or a capability

● The “method table” is either a syscall table, a switch or a cascade (of either or both)

– Basic arguments universally passed in GPRs
● Least trouble with validation

● Might not align perfectly with ABI

– Extended arguments usually passed as pointers to user memory
● Need thorough validation (time-of-check to time-of-use races)



System Calls MultiplexingSystem Calls Multiplexing

● None
– Each syscall is a fixed method (more-or-less)

● Capabilities
– Each capability type provide a set of methods (usually fixed)

● ioctls
– Each object instance (e.g. file descriptor, netlink socket) provides 

an arbitrary set of methods or messages



Kernel Object NamingKernel Object Naming
● Capabilities

– Also file descriptors, sockets, handles, virtual addresses, etc.

– Local identifiers of objects

– Implicitly follow the “share nothing” principle
● No extra effort for partitioning required

● Global resources
– Tasks (processes), threads, users, groups, file names, keys, network devices, network addresses, physical 

addresses, etc.

– Explicit partitioning required
● Namespaces, containers, zones, etc.

– Class of global resources that group and isolate global resources
– Non-trivial to achieve a truly “share nothing” state



““Everything Is a File”Everything Is a File”
● Original UNIX paradigm

– N.B.: Mixes two aspects (naming, handling) together

– Resources uniformly identified as file names
● Special files for global “non-files” (e.g. named pipes, device nodes)
● Internal file systems for local “non-files” (e.g. anonymous pipes, sockets)
● Special (synthetic) file systems for exposing run-time data (e.g. /proc, /sys)
● Despite the effort, there were always exceptions (processes, threads, semaphores, etc.)

– Resources handled uniformly
● Basic operations (create, destroy, etc.) and input/output stream of bytes
● Despite the effort, there were always major exceptions

– Special operations for different types of objects
– ioctls as a completely unconstrained API



““Everything Is a File”Everything Is a File”

Source: DALL·E 3 via ChatGPT 4



Everything Is ...Everything Is ...
● … a file (for real)

– Plan 9
● No ioctls, just a fixed set of operations (9P 

protocol)
– Version, Attach, Auth, Walk, Open, New, 

Clunk, Delete, Stat, Read, Write, Flush

– Everything marshalled as streams of bytes

● … an object

– Windows
● Pragmatic approach without sticking to a 

paradigm with exceptions
– “Normal APIs” instead of magic ioctls or 

magic strings
– Often some degree of uniformity might be a 

benefit (e.g. for enumeration)

● … a capability
– Actual local uniform naming (but 

not uniform handling)
● Some uniform handing thanks to 

the generic capability operations

● … a memory area
– All resources represented as 

(demand mapped) virtual memory
● Everything marshalled as byte 

accesses



Device Drivers InterfaceDevice Drivers Interface
● Device drivers are portable (to a degree)

– Platform specifics can be abstracted

● UART driver accesses hardware registers (I/O ports or MMIO)

● PCI device driver accesses PCI configuration space

● USB device driver uses USB controller endpoints

– Host / device endianess, memory models, etc.

– Class drivers

● Supporting many individual devices via a vendor-neutral interface
– USB HID, Mass Storage, UVC, etc.

– Tree of device driver instances

– Follows the hierarchy of devices

● Example: Root driver, platform driver, interrupt controller driver, DMA controller driver, PCI driver, PCI bridge driver, USB controller driver, USB 
class driver, custom USB endpoint driver

– Managing and delegating resources



Device Drivers FrameworkDevice Drivers Framework
● Implementing common parts of device drivers

– Driver instance life cycle
● Discovery (bus enumeration, hot plug/unplug), probing, attaching, detaching

– Resource delegation
● I/O port ranges, MMIO ranges, interrupts, DMA areas, power quotas, etc.
● IOMMU programming

– Device soft state management
● Software mirror of hardware state
● Device initialization, device / bus reset, device surprise hot removal

– Device naming
● Enumeration
● Persistent instance identification

– Level-triggered interrupts vs. user space drivers



Classical IPCClassical IPC
● POSIX signals

– Since UNIX Version 4
– Asynchronous notification sent to a process (thread)

● Similar to level-triggered interrupts (including masking)
● Sender uses the kill(2) syscall

– Run-time exceptions and state changes also cause signals (SIGFPE, SIGSEGV; SIGPIPE, SIGINT, 
SIGSTOP/SIGTSTP, SIGCONT, SIGTRAP)

● Receiver thread is interrupted and a signal handler is executed (installed using signal(2) or 
sigaction(2))

– Race conditions due to nested signals
– Calling non-reentrant functions (e.g. malloc(), printf()) is undefined behavior
– Interruption of some syscalls

● Real-time signals
– Queued, guaranteed sending order



Classical IPCClassical IPC
● Anonymous pipes
● Named pipes

– Persistent uni-directional pipes
● Same API as files (anonymous pipes)
● Pipe identification: File system i-node (bound to a directory entry)
● No identification of senders on the receiver end

– Writes of data larger than PIPE_BUF bytes can be interleaved

– Windows named pipes
● Dedicated namespace (Named Pipe File System \\.\pipe\)
● Non-persistent (removed when all clients close the pipe)
● Anonymous pipes are named pipes with random names



Classical IPCClassical IPC

● UNIX domain sockets
– Reliable bi-directional stream of bytes (akin to TCP), or …
– Unordered unreliable datagrams (akin to UDP), or …
– Reliable ordered stream of datagrams between local processes

● Same API as BSD sockets
● Socket identification: File system i-node (bound to a directory entry or 

to an abstract socket namespace)
● Sending file descriptors (sendmsg(), rescvmsg()) as ancillary data

– Rudimentary capabilities



Classical IPCClassical IPC
● Software shared memory

– POSIX Shared Memory, System V Shared Memory
● Persistent shared memory objects in dedicated namespace

– In Linux, objects created as tmpfs files (usually /dev/shm)

● shm_open(3), mmap(2), munmap(2), shm_unlink(3)
● shmget(2), shmat(2), shmdt(2)

– Memory mapped files
● Shared memory backed by a file (or anonymous memory)
● mmap(2), munmap(2)
● memfd_create(2)

– Removed when no longer referenced
– File sealing (preventing the other party from changing the configuration)



Classical IPCClassical IPC

● Message passing
– Sending

● Synchronous blocking
– Sequential processing waiting for reply

● Synchronous non-blocking
– Sequential processing not waiting for reply

● Asynchronous blocking
– Non-sequential processing waiting for reply

● Asynchronous non-blocking
– Non-sequential processing not waiting for reply



Synchronous Blocking Send Synchronous Non-blocking Send



Asynchronous Blocking Send Asynchronous Non-blocking Send



Classical IPCClassical IPC

● Message passing
– Receiving

● Synchronous blocking
– Explicit rendez-vous waiting for receiving

● Synchronous non-blocking
– Explicit rendez-vous not waiting for receiving

● Asynchronous
– Interrupt-style



Synchronous Blocking Receive Synchronous Non-blocking Receive Asynchronous Receive



Classical IPCClassical IPC

● Message passing
– Addressing

● Symmetrical
– Equivalent peers

● Asymmetrical
– Explicit client (sender) and receiver (server) roles

● Direct
– Peers are explicit endpoints

● Indirect
– Peers are hidden behind message queues



Classical IPCClassical IPC

● Message passing
– Transmitting

● Uniplex
– Peers take turns in communication

● Duplex
– Peers can communicate independently



Classical IPCClassical IPC
● Message passing

– POSIX message queues, System V Message Passing
● Indirect addressing using a message queue (key for msgget(2), i-node for 

mq_open(3))
● msgsnd(2), mq_send(3) asynchronous non-blocking (unless the queue is full)
● msgrcv(2), mq_receive(3) synchronous blocking by default

– Windows Messages
● Symmetrical addressing using window/thread handles
● SendMessage() synchronous blocking, SendMessageCallback(), 

SendNotifyMessage(), PostMessage() asynchronous non-blocking
● GetMessage() synchronous blocking, PeekMessage() synchronous non-blocking



Mach IPCMach IPC
● Prototypical microkernel asynchronous message passing

– Ports
● Receive end-points and associated message queues

– Port rights
● Client capabilities for accessing a port (send, receive, send-once)

– Only a single server can have a receive right

● Each task has an initial set of port rights
– Communicating with the kernel, etc.

– Tagged message structure
● Kernel enforces type correctness
● Port rights can be also passed
● Timeouts



Mach IPCMach IPC
● The origin of the “IPC overhead anxiety”

– IPC overhead of 50 % compared to monolithic UNIX
● With a single UNIX server

● Root causes
– Complex non-optimized kernel-side code

● Tagged data type evaluation, handling of timeouts, etc.
● Dynamic data structures

● But the implementation only uses linked lists
● Excessive cache footprint

– Asynchronicity rarely used for the given workloads
● User space tasks (mostly ported from UNIX) use synchronous communication and blocking I/O

● Nowadays, the anxiety is unfounded

– Bershad has argued 33 years ago that the IPC overhead is increasingly irrelevant [1]
● Real-world performance of computer systems is dominated by other factors

– Liedtke has shown 30 years ago that the IPC overhead is negligeable assuming proper microkernel design [2]



The Era of Synchronous IPCThe Era of Synchronous IPC
● L3 (1988), L4 (1993) by Jochen Liedtke

– IPC overhead of 3 % compared to monolithic UNIX
● With a single UNIX server
● Single IPC call overhead comparable to single syscall overhead in UNIX (approx. 20 times 

faster than on Mach)

– Synchronous blocking IPC
● Explicit client/server rendez-vous and thread migration

– No need for full context switch (address space switch is sufficient)
– No buffering, no scheduling, data passed mostly directly in registers

● Highly target-optimized implementation
– Small working set, cache-friendly code
– No complex algorithms or dynamic data structures



The Era of Synchronous IPCThe Era of Synchronous IPC
● L3 (1988), L4 (1993) by Jochen Liedtke

– Drawbacks
● Non-portable microkernel (by design)

– Poor code readability and maintainability
– Preoccupation with single-threaded performance conflicts with other goals (e.g. 

throughput)
● Design issues of synchronous IPC

– Unresponsive server blocks the client indefinitely
● Originally solved using timeouts (in hindsight not a great solution)

– Asynchronous communication emulated on top of synchronous IPC
● Abstraction inversion anti-pattern (i.e. requires multithreading)

– Scalability suffers on modern massively parallel architectures



The Return of Asynchronous IPCThe Return of Asynchronous IPC
● The best of both worlds

– Synchronous blocking IPC still superior in specific use cases
● Synchronous blocking semantics, single-core communication

– Asynchronous IPC reasonably simple, cache-friendly with fast-path kernel code
● Bounded kernel buffers (additional buffering possible on the client user space side)
● Intelligent bookkeeping data structures (hash tables, trees)
● Simple IPC message structure (only integer payload that fits into registers)

– Additional semantics for memory copying and memory sharing possible
● Possibility to build rich abstractions in user space

– Actors, agents, continuations, futures, promises



Case Study: HelenOS IPCCase Study: HelenOS IPC
● Basic design

– Message passing over asymmetric connections
● Sender

– Asynchronous non-blocking send
– 6-integer payload (1st integer interpreted as interface/method ID)
– Bounded kernel buffers

● Receiver
– Synchronous blocking receive
– Every message paired with a reply (6-integer return value)

● New connections established via existing connections (capabilities)
– Security policy delegated to the connection brokers
– Every client initially connected to the Naming Service (default broker)

– Message forwarding (recursive)

– Kernel events and hardware interrupts converted to IPC messages (no reply)



Case Study: HelenOS IPCCase Study: HelenOS IPC
● Kernel API

– Global method IDs with special semantics
● IPC_M_CONNECTION_CLONE (clone a connection capability from the client to the server)
● IPC_M_CONNECT_TO_ME (establish a callback connection)
● IPC_M_CONNECT_ME_TO (establish a new connection)

– When forwarded, the connection is potentially established to the next receiver
● Broker (Naming Service, Location Service, Device Manager, VFS, etc.) connects the client to the target server

● IPC_M_SHARE_IN / IPC_M_SHARE_OUT (receive/send a shared virtual address space area)
● IPC_M_DATA_READ / IPC_M_DATA_WRITE (receive/send bulk data)
● IPC_M_STATE_CHANGE_AUTHORIZE (update a server state on behalf of a different client)

– Three-way handshake

● IPC_M_PHONE_HUNGUP (connection close)



Case Study: HelenOS IPCCase Study: HelenOS IPC

● User space API
– Async framework

● Goal: Writing single-threaded sequential client code that makes 
effective use of the asynchronous IPC

– User space-scheduled cooperative threads (fibrils)
● Efficient parallelism (preempted only when blocking on waiting for IPC replies)

● Abstracting the low-level IPC connections into sessions
– Each session can have a different threading model

● Abstracting the atomic low-level IPC messages into logical exchanges
– Easily implementing complex communication protocols



Case Study: HelenOS IPCCase Study: HelenOS IPC
async_exch_t *ns_exch = async_exchange_begin(session_ns);

async_sess_t *sess =
async_connect_me_to_iface(ns_exch, INTERFACE_VFS, SERVICE_VFS, 0);

async_exchange_end(ns_exch);

async_exch_t *exch = async_exchange_begin(sess);

ipc_call_t answer;
aid_t req =

async_send_3(exch, VFS_IN_OPEN, lflags, oflags, 0, &answer);

async_data_write_start(exch, path, path_size);

async_exchange_end(exch);

// Do some other useful work in the meantime

sysarg_t rc;
async_wait_for(req, &rc);

if (rc == EOK)
fd = (int) IPC_GET_ARG1(answer);



Networking in Operating SystemsNetworking in Operating Systems

● Socket abstraction
– Communication endpoint abstraction

● In case of IP: [protocol, address, port]
– Address and port might be implicit or wildcard on the API level
– Listening socket vs. accepting socket

● In case of Berkeley API: Socket descriptor as file descriptor
– Other competing APIs (e.g. STREAMS) almost disappeared

● Connection-oriented sockets: Socket pair
– In case of IP: [protocol, source address, source port, destination address, 

destination port]



Networking in Operating SystemsNetworking in Operating Systems

● Stacking and encapsulation
– RFC 3439: Layering considered harmful

Data

UDP
data

UDP
header

IP
header

Frame
header

Frame
footer

Link

Internet

Transport

Application

IP data

Frame data



Networking in Operating SystemsNetworking in Operating Systems
● Breaking layering

– Hardware off-loading
● Checksum calculation, pre-parsing and hashing

– NIC already touching each octet anyway

– XDP (eXpress Data Path)
● Early eBPF packet hook (before any networking stack)

– Raw data inspection

● Possibility for hardware off-loading

– Packet descriptor
● Structure describing packet data & metadata

– Pointers to various fields
● start, size: Pointing to the raw buffer with focus on current headers



Networking in Operating SystemsNetworking in Operating Systems
● Performance considerations

– DMA scatter-gather into TX/RX ring buffers
● Packet sizes and page sizes are not divisible
● Header pushing / popping is not necessarily fixed (IPv6 header chaining)

– Linear segment with headroom (zero-copy if possible)
– Non-linear segments

– Interrupt coalescing
● Throughput vs. latency

– Explicit polling architecture
– Adaptive polling under heavy load
– Flow aggregation

– Deferred interrupts



Networking in Operating SystemsNetworking in Operating Systems
● Performance considerations

– TCP state machine
● Real-time timeouts
● Local buffering vs. congestion control

– Original approach: Large RX buffers increase throughput
● Increase data latency, but also signaling latency

– Current approach: Latency-bound RX buffers
● Better queuing discipline

– Shared resources
● Flow caches, defragmentation buffers

– Remotely exploitable

● Global quotas, zero copy
– Locally exploitable
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Thank you!
Questions?
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