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Address SpaceAddress Space
● Universal abstraction for accessing data (code is a form of data)

– Physical memory
● Bytes, words, instructions (or similar)

– Virtual memory (software / device)
● Pages (or similar)

– I/O memory
● Bytes, words, ports (or similar)
● Can be embedded in physical memory (memory-mapped I/O)

– Persistent memory
● Blocks, pages (or similar)
● Can be combined with physical memory (non-volatile memory)

– Object space
● Keys, capabilities (or similar)



Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media
– Cylinder / Head / Sector  Linear (Logical) Block Addressing

● Originally interface abstraction not very high
– Hard sectored  Soft sectored (with remapping)

● 512 B blocks  4096 B blocks (floppy/hard drives)
● 2048 B blocks (optical drives), 2353 B blocks (raw optical drives)

– Latency several orders of magnitude larger than volatile memory
● Originally interface I/O efficiency not very important

– Single tenant
– Single request stream



Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media

heads cylinders
(tracks) sectors & interleaving



Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media
– Multi-tenant performance dominated by physical seek time
– Still mostly via single request stream

● Software I/O scheduling (shortest seek first, elevator/sweep, shortest 
deadline first, etc.)

– Might not have the most accurate physical storage information (i.e. 
remapping)

● I/O command batching (queuing)
– Leaving the optimal I/O order (within the batch) to hardware
– Incorporates interrupt coalescing



Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Differing characteristics from rotational drives
● Physical characteristics mostly unimportant
● Addressing characteristics

– Different native read/write and erase blocks
● Write amplification

● Physical addressing more like volatile memory

– Latency much closer to volatile memory
● Performance dominated by interface I/O efficiency

– High degree of internal parallelism

– Unique wear characteristics



Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Reflection in the I/O interface (e.g. NVMe)
● Generally provides the common LBA abstraction

– Wear leveling, block remapping and garbage collection in hardware Flash Transition Layer 
(FTL)

● Frequently implemented as multi-level log-based storage
● Software trim hint to indicate unused (erased) blocks
● Trade-offs between write amplification, performance, idle characteristics

● Low latency and parallel access
– “Unlimited” request queues with lock-less access
– “Unlimited” command queuing
– Interrupt coalescing & multiple interrupt groups
– Full-duplex scatter-gather DMA



Non-Volatile MemoryNon-Volatile Memory

● Solid-state drives
– Exposing more of the hardware architecture to software

● Addressing
– Open-channel SSD
– NVMe Zoned Namespace

● Note: Zones also useful for Shingled Magnetic Recording (SMR)
● Compute off-loading

– Basic NVMe I/O commands: Compare, Write Zeroes, Copy
– NVMe Key Value command set
– Near data computing (proposed)



 

Source: Werner Fischer



Storage Near Data ComputingStorage Near Data Computing
● Off-loading computation to storage controller

– Decrease latency, improve throughput, decrease energy consumption

– Improve performance
● Trade-off: Lower performance of embedded cores

– Still a performance boost when compute cores are already loaded

Source: Gu B., Yoon A. S., Bae D.-H., Jo I., Lee J., Yoon J., Kang J.-U., Kwon M., Yoon C., Cho S., 
Jeong J., Chang D.: Biscuit: A Framework for Near-Data Processing of Big Data Workloads, 
in Proceedings of 43rd Annual International Symposium on Computer Architecture, 
ACM/IEEE, 2016



Memory Near Data ComputingMemory Near Data Computing
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Memory Near Data ComputingMemory Near Data Computing
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Memory Near Data ComputingMemory Near Data Computing
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Generic Near Data ComputingGeneric Near Data Computing
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Generic Near Data ComputingGeneric Near Data Computing
● Current work-in-progress

– Universal open interface standards
● Currently extensions of existing I/O interfaces (NVMe)

● Compute Express Link (CXL)

● Open questions

– Universal programming model
● Stream / flow processing

● Association of compute units with data

– Universal compute model
● ISA

● Safety and security considerations

– Off-loading vs. distributed computing
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Classification of File SystemsClassification of File Systems
● Traditional

– Examples: ext4, XFS, NTFS, UFS (latest variants), BFS, JFS2, etc.

– Universal set of features

– Distinction between directory entries and i-nodes

– On-disk layout affected by rotational media and traditional partitioning

– Typically use of somewhat sophisticated data structures

– Typically larger constant overhead
● Not usable for small media

– Reliability via journaling of changes
● Soft updates as an alternative



Classification of File SystemsClassification of File Systems
● Basic

– Examples: FAT, exFAT, etc.
● Historical examples (with some advanced features): HPFS, HFS

– Somewhat limited set of features
● Typically missing permissions, ownership and other metadata, limited directory entry 

types, limited file names, limited file sizes, size of some data structures fixed, etc.

– Frequently no distinction between directory entries and i-nodes

– On-disk layout could be affected by slow / removable rotational media

– Typically not so sophisticated data structures

– Limited reliability



Classification of File SystemsClassification of File Systems

● Optical
– Examples: ISO 9660, UDF
– Compact, continuous structures to minimize seeking

● Path tables, directories, files

– Additional sessions referencing previous sessions
● Keeping / adding / removing files
● Wear leveling and block remapping for rewritable media

– As opposed to hardware abstractions (e.g. Mount Rainier)

– Hybrid media



Classification of File SystemsClassification of File Systems

● Log-structured
– Examples: JFFS2, NILFS2, YAFFS, UBIFS, F2FS
– Idea: Instead of keeping a journal for consistency, why not use the journal 

as the data storage?
– Suits well zoned media (flash, SMR)

● Block subdivision and GC more efficient than basic appending

– Stale data can be accessed as snapshots (versions)
– Inherently always consistent
– Initial scan optimizations (persistent indexes)



Classification of File SystemsClassification of File Systems
● Copy-on-write

– Examples: ZFS, btrfs, bcachefs, HAMMER2, APFS, ReFS

– Idea: Flexible on-disk layout, but no overwrites

– Stale data can be accessed as snapshots (versions)

– Multiple mountable roots

– Other advanced features (not strictly specific to COW)
● Data checksums (separately stored, Merkle tree), data redundancy, deduplication, integration 

with logical volume management, hierarchical caching, wandering intent logs, replication

– Inherently always consistent

– Initial scan issues avoided, but GC still needed (also serves as defragmentation)



Classification of File SystemsClassification of File Systems

● Read-only
– Examples: SquashFS, cramfs, EROFS, AXFS
– Efficient storage of seed images (boot images, container images, 

thin provisioning, etc.)
● Often coupled with union mounts for read/write support

– Low overhead, no fragmentation, compression
– Easy caching, execute-in-place (adaptive compression)



Classification of File SystemsClassification of File Systems

● Shared-disk
– Examples: CXFS, GPFS, GFS2, OCFS, HAMMER2
– Support for underlying block modifications from independent 

sources
● Via iSCSI, ATA over Ethernet, Fibre Channel, InfiniBand, NVMe over 

fabric
– In between regular file systems and network file systems
– Distributed lock manager vs. metadata broker



 
File System Curiosities
6.1



Traditional File Systems with BonusesTraditional File Systems with Bonuses

● AdvFS, NSS
– Fairly traditional file systems, but supporting multiple block 

devices
● HFS+

– Hard links to directories
● RaiserFS

– Tail packing (sub-allocation of blocks)



Traditional File Systems with BonusesTraditional File Systems with Bonuses

● NTFS
– Reparse points, file system filters
– Caching i-node size in directory entry (non-consistent among hard links)
– Hard links for 8.3 file names
– Per-directory case sensitivity

● Case insensitivity is not trivial [1][2]

– Transactional NTFS
● Integrated with Kernel Transaction Manager
● Transaction-Safe FAT



Traditional File Systems with BonusesTraditional File Systems with Bonuses
● XFS

– Allocation groups (concurrency)
– Multiple devices, COW, snapshots, deduplication, striping

● Controlled by Stratis

● ext4
– Journal checksums

● StegFS
– Steganographic extension to ext2

● Undetectable, hidden layer of files on a regular file system



Less Traditional File SystemsLess Traditional File Systems
● btrfs

– Integrated support for union mounting (read-only seeding)

● Linear Tape File System (LTFS)
● NOVA

– Targeting byte-addressable persistent memory (NVRAM)

– Log structured for metadata per i-node (concurrency)
● Log is append-only, but non-continuous (linked list)
● Replication and checksums

– Data blocks managed as copy-on-write

– Global journaling for reliability of non-atomic operations



 

Source: DALL·E 3 via ChatGPT 4o



Other File Systems RemarksOther File Systems Remarks
● Path separator

– The history of slash / backslash in complicated [4][5]

● Resource forks, extended attributes
– Multiple streams associated with a single file

● Forward and backward compatibility
– Feature sets, feature bitmaps

– Allowed and required features

● File system semantics are not trivial [3]
● Path lengths, valid path characters
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Thank you!
Questions?
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