

Advanced Operating Systems
Summer Semester 2024/2025

Martin Děcký

Storage
5

Address SpaceAddress Space
● Universal abstraction for accessing data (code is a form of data)

– Physical memory
● Bytes, words, instructions (or similar)

– Virtual memory (software / device)
● Pages (or similar)

– I/O memory
● Bytes, words, ports (or similar)
● Can be embedded in physical memory (memory-mapped I/O)

– Persistent memory
● Blocks, pages (or similar)
● Can be combined with physical memory (non-volatile memory)

– Object space
● Keys, capabilities (or similar)

Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media
– Cylinder / Head / Sector Linear (Logical) Block Addressing

● Originally interface abstraction not very high
– Hard sectored Soft sectored (with remapping)

● 512 B blocks 4096 B blocks (floppy/hard drives)
● 2048 B blocks (optical drives), 2353 B blocks (raw optical drives)

– Latency several orders of magnitude larger than volatile memory
● Originally interface I/O efficiency not very important

– Single tenant
– Single request stream

Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media

heads cylinders
(tracks) sectors & interleaving

Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media
– Multi-tenant performance dominated by physical seek time
– Still mostly via single request stream

● Software I/O scheduling (shortest seek first, elevator/sweep, shortest
deadline first, etc.)

– Might not have the most accurate physical storage information (i.e.
remapping)

● I/O command batching (queuing)
– Leaving the optimal I/O order (within the batch) to hardware
– Incorporates interrupt coalescing

Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Differing characteristics from rotational drives
● Physical characteristics mostly unimportant
● Addressing characteristics

– Different native read/write and erase blocks
● Write amplification

● Physical addressing more like volatile memory

– Latency much closer to volatile memory
● Performance dominated by interface I/O efficiency

– High degree of internal parallelism

– Unique wear characteristics

Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Reflection in the I/O interface (e.g. NVMe)
● Generally provides the common LBA abstraction

– Wear leveling, block remapping and garbage collection in hardware Flash Transition Layer
(FTL)

● Frequently implemented as multi-level log-based storage
● Software trim hint to indicate unused (erased) blocks
● Trade-offs between write amplification, performance, idle characteristics

● Low latency and parallel access
– “Unlimited” request queues with lock-less access
– “Unlimited” command queuing
– Interrupt coalescing & multiple interrupt groups
– Full-duplex scatter-gather DMA

Non-Volatile MemoryNon-Volatile Memory

● Solid-state drives
– Exposing more of the hardware architecture to software

● Addressing
– Open-channel SSD
– NVMe Zoned Namespace

● Note: Zones also useful for Shingled Magnetic Recording (SMR)
● Compute off-loading

– Basic NVMe I/O commands: Compare, Write Zeroes, Copy
– NVMe Key Value command set
– Near data computing (proposed)

Source: Werner Fischer

Storage Near Data ComputingStorage Near Data Computing
● Off-loading computation to storage controller

– Decrease latency, improve throughput, decrease energy consumption

– Improve performance
● Trade-off: Lower performance of embedded cores

– Still a performance boost when compute cores are already loaded

Source: Gu B., Yoon A. S., Bae D.-H., Jo I., Lee J., Yoon J., Kang J.-U., Kwon M., Yoon C., Cho S.,
Jeong J., Chang D.: Biscuit: A Framework for Near-Data Processing of Big Data Workloads,
in Proceedings of 43rd Annual International Symposium on Computer Architecture,
ACM/IEEE, 2016

Memory Near Data ComputingMemory Near Data Computing

memory
matrix

row

decoder ⁞

control logic sense amps

.........

address

data

Y-gating

.........

Y

RAS

CAS

WE

Memory Near Data ComputingMemory Near Data Computing

memory
matrix

row

decoder ⁞

control logic sense amps

.........

address

data

filtering / computing

.........

opcode

RAS

CAS

WE

Memory Near Data ComputingMemory Near Data Computing

memory
matrix

row

decoder ⁞

control logic

sense amps
with gates

.........

address

data

Y-gating

.........

Y

RAS

CAS

WE

opcode

Generic Near Data ComputingGeneric Near Data Computing

Host

Memory
Processing
In-Memory

(PIM)

Storage In-Storage
Computing

(ISC)

Network On-Stream
Processing

(OSP)

Generic Near Data ComputingGeneric Near Data Computing
● Current work-in-progress

– Universal open interface standards
● Currently extensions of existing I/O interfaces (NVMe)

● Compute Express Link (CXL)

● Open questions

– Universal programming model
● Stream / flow processing

● Association of compute units with data

– Universal compute model
● ISA

● Safety and security considerations

– Off-loading vs. distributed computing

File Systems
6

Classification of File SystemsClassification of File Systems
● Traditional

– Examples: ext4, XFS, NTFS, UFS (latest variants), BFS, JFS2, etc.

– Universal set of features

– Distinction between directory entries and i-nodes

– On-disk layout affected by rotational media and traditional partitioning

– Typically use of somewhat sophisticated data structures

– Typically larger constant overhead
● Not usable for small media

– Reliability via journaling of changes
● Soft updates as an alternative

Classification of File SystemsClassification of File Systems
● Basic

– Examples: FAT, exFAT, etc.
● Historical examples (with some advanced features): HPFS, HFS

– Somewhat limited set of features
● Typically missing permissions, ownership and other metadata, limited directory entry

types, limited file names, limited file sizes, size of some data structures fixed, etc.

– Frequently no distinction between directory entries and i-nodes

– On-disk layout could be affected by slow / removable rotational media

– Typically not so sophisticated data structures

– Limited reliability

Classification of File SystemsClassification of File Systems

● Optical
– Examples: ISO 9660, UDF
– Compact, continuous structures to minimize seeking

● Path tables, directories, files

– Additional sessions referencing previous sessions
● Keeping / adding / removing files
● Wear leveling and block remapping for rewritable media

– As opposed to hardware abstractions (e.g. Mount Rainier)

– Hybrid media

Classification of File SystemsClassification of File Systems

● Log-structured
– Examples: JFFS2, NILFS2, YAFFS, UBIFS, F2FS
– Idea: Instead of keeping a journal for consistency, why not use the journal

as the data storage?
– Suits well zoned media (flash, SMR)

● Block subdivision and GC more efficient than basic appending

– Stale data can be accessed as snapshots (versions)
– Inherently always consistent
– Initial scan optimizations (persistent indexes)

Classification of File SystemsClassification of File Systems
● Copy-on-write

– Examples: ZFS, btrfs, bcachefs, HAMMER2, APFS, ReFS

– Idea: Flexible on-disk layout, but no overwrites

– Stale data can be accessed as snapshots (versions)

– Multiple mountable roots

– Other advanced features (not strictly specific to COW)
● Data checksums (separately stored, Merkle tree), data redundancy, deduplication, integration

with logical volume management, hierarchical caching, wandering intent logs, replication

– Inherently always consistent

– Initial scan issues avoided, but GC still needed (also serves as defragmentation)

Classification of File SystemsClassification of File Systems

● Read-only
– Examples: SquashFS, cramfs, EROFS, AXFS
– Efficient storage of seed images (boot images, container images,

thin provisioning, etc.)
● Often coupled with union mounts for read/write support

– Low overhead, no fragmentation, compression
– Easy caching, execute-in-place (adaptive compression)

Classification of File SystemsClassification of File Systems

● Shared-disk
– Examples: CXFS, GPFS, GFS2, OCFS, HAMMER2
– Support for underlying block modifications from independent

sources
● Via iSCSI, ATA over Ethernet, Fibre Channel, InfiniBand, NVMe over

fabric
– In between regular file systems and network file systems
– Distributed lock manager vs. metadata broker

File System Curiosities
6.1

Traditional File Systems with BonusesTraditional File Systems with Bonuses

● AdvFS, NSS
– Fairly traditional file systems, but supporting multiple block

devices
● HFS+

– Hard links to directories
● RaiserFS

– Tail packing (sub-allocation of blocks)

Traditional File Systems with BonusesTraditional File Systems with Bonuses

● NTFS
– Reparse points, file system filters
– Caching i-node size in directory entry (non-consistent among hard links)
– Hard links for 8.3 file names
– Per-directory case sensitivity

● Case insensitivity is not trivial [1][2]

– Transactional NTFS
● Integrated with Kernel Transaction Manager
● Transaction-Safe FAT

Traditional File Systems with BonusesTraditional File Systems with Bonuses
● XFS

– Allocation groups (concurrency)
– Multiple devices, COW, snapshots, deduplication, striping

● Controlled by Stratis

● ext4
– Journal checksums

● StegFS
– Steganographic extension to ext2

● Undetectable, hidden layer of files on a regular file system

Less Traditional File SystemsLess Traditional File Systems
● btrfs

– Integrated support for union mounting (read-only seeding)

● Linear Tape File System (LTFS)
● NOVA

– Targeting byte-addressable persistent memory (NVRAM)

– Log structured for metadata per i-node (concurrency)
● Log is append-only, but non-continuous (linked list)
● Replication and checksums

– Data blocks managed as copy-on-write

– Global journaling for reliability of non-atomic operations

Source: DALL·E 3 via ChatGPT 4o

Other File Systems RemarksOther File Systems Remarks
● Path separator

– The history of slash / backslash in complicated [4][5]

● Resource forks, extended attributes
– Multiple streams associated with a single file

● Forward and backward compatibility
– Feature sets, feature bitmaps

– Allowed and required features

● File system semantics are not trivial [3]
● Path lengths, valid path characters

ReferencesReferences
[1] https://lwn.net/Articles/784041/

[2] https://www.youtube.com/watch?v=yVlEZKiMGJU

[3] https://danluu.com/deconstruct-files/

[4] https://www.os2museum.com/wp/why-does-windows-really-use-backslash-as-path-separator/

[5] https://learn.microsoft.com/en-us/archive/blogs/larryosterman/why-is-the-dos-path-character

https://lwn.net/Articles/784041/
https://www.youtube.com/watch?v=yVlEZKiMGJU
https://danluu.com/deconstruct-files/
https://www.os2museum.com/wp/why-does-windows-really-use-backslash-as-path-separator/
https://learn.microsoft.com/en-us/archive/blogs/larryosterman/why-is-the-dos-path-character

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

