
 

Advanced Operating Systems
Summer Semester 2024/2025

Martin Děcký



 
Architecture
7



Operating Systems Design SpaceOperating Systems Design Space



Operating Systems Design SpaceOperating Systems Design Space

fine-grained
components

monolithic
components



Operating Systems Design SpaceOperating Systems Design Space

fine-grained
components

monolithic
components

static
deployment

dynamic
deployment



Operating Systems Design SpaceOperating Systems Design Space

fine-grained
components

monolithic
components

static
deployment

dynamic
deployment

safety via
isolation

sequential
performance



Operating Systems Design SpaceOperating Systems Design Space

fine-grained
components

monolithic
components

safety via
isolation

sequential
performance

static
deployment

dynamic
deployment

microkernel
multiserver

microkernel
single-server

monolithic
kernel



Operating Systems Design SpaceOperating Systems Design Space

fine-grained
components

monolithic
components

safety via
isolation

sequential
performance

static
deployment

dynamic
deployment

microkernel
multiserver

microkernel
single-server

monolithic
kernel

unikernel separation
kernel

hypervisor



Architecture Changing over TimeArchitecture Changing over Time
● Windows NT

– Started essentially as a reimplementation of CMU Mach
● Device drivers and file systems in user space

– Gradually moved towards monolithic implementation

– Recently certain device driver classes (USB, sound) in user space again

● Linux

– Archetypal monolithic kernel

– Originally with GPU drivers in user space (X11)
● Gradually moved to kernel space

– Other device drivers optionally in user space (FUSE, USB, etc.)

– Proliferation of eBPF



Very Abridged Operating Systems HistoryVery Abridged Operating Systems History
● 1969

– RC 4000 Multiprogramming System
● Per Brinch Hansen (Regnecentralen)
● Separation of mechanism and policy, modularity via isolated concurrently running processes, 

message passing
● Same year as Multics

● 1971
– HYDRA

● William Wulf (Carnegie Mellon University)
● Capability-based, object-oriented kernel
● Around the same time as UNIX



Very Abridged Very Abridged Operating Systems HistoryOperating Systems History
● 1979

– EUMEL / L2
● Jochen Liedtke (University of Bielefeld)
● Microkernel running bitcode virtual machines

● 1982
– QNX

● Gordon Bell, Dan Dodge (University of Waterloo, later Quantum Software 
Systems)

● Earliest commercially successful microkernel-based OS (still in active 
development and use today, owned by BlackBerry)



Very Abridged Very Abridged Operating Systems HistoryOperating Systems History

● 1985
– CMU Mach

● Richard Rashid, Avie Tevanian (Carnegie Mellon University)
● Arguably the most widespread microkernel code base

– Core part of the operating systems by Apple (no longer following the original 
design principles) and GNU/Hurd

● Highly influential
– Affected the design of Windows NT
– Establishing the usual terminology and conventions

● Well-known shortcomings



Very Abridged Very Abridged Operating Systems HistoryOperating Systems History
● 1988

– L3
● Jochen Liedtke (Gesellschaft für Mathematik und Datenverarbeitung, later known as Fraunhofer)
● Addressing the main performance issues of CMU Mach

– Synchronous rendezvous-style remote calls instead of asynchronous in-kernel buffered message passing

● 1993
– L4

● Order of magnitude performance improvement compared to CMU Mach
– Small and cache-friendly kernel working set, fast-path IPC without complex processing (access rights, data 

interpretation, etc.)

● User mode pagers and recursive address spaces
● Non-portable hand-written assembly implementation (for 486 and Pentium)



Monolithic OS ArchitectureMonolithic OS Architecture

hardware

monolithic kernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC device

drivers
file system

drivers
user

mgmt
network

stack ...



Single-server Microkernel OS ArchitectureSingle-server Microkernel OS Architecture

hardware

microkernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC

system server
device
drivers

file system
drivers

user
mgmt

network
stack ...



Multiserver Microkernel OS ArchitectureMultiserver Microkernel OS Architecture

file system
driver server

hardware

microkernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC

naming
server

location
server

device driver
server

device driver
server

device driver
server

file system
driver server
file system

driver server

device
multiplexer

file system
multiplexer

network
stack

security
server

...



Type-1 Hypervisor ArchitectureType-1 Hypervisor Architecture

hardware

hypervisor
hyper-privileged

modememory
mgmt scheduler comm

privileged mode

operating system

kernel
privileged mode

unprivileged mode

app app

app app

operating system

kernel
privileged mode

unprivileged mode

app app

app app

operating system

kernel
privileged mode

unprivileged mode

app app

app app



Type-1 Hypervisor ArchitectureType-1 Hypervisor Architecture

hardware

hypervisor
hyper-privileged

modememory
mgmt scheduler comm

privileged mode

operating system

kernel
privileged mode

unprivileged mode

app

operating system

kernel
privileged mode

unprivileged mode

app

operating system

kernel
privileged mode

unprivileged mode

app



Type-1 Hypervisor ArchitectureType-1 Hypervisor Architecture

hardware

hypervisor
hyper-privileged

modememory
mgmt scheduler comm

privileged mode

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component



Multiserver Microkernel OS ArchitectureMultiserver Microkernel OS Architecture

hardware

unikernel

kernel
component

file system
driver server

application application application

naming
server

location
server

device driver
server

device driver
server

device driver
server

file system
driver server
file system

driver server

device
multiplexer

file system
multiplexer

network
stack

security
server

...
device
driver

microkernelmemory
mgmt scheduler IPC

privileged mode

unprivileged mode



Multikernel OS ArchitectureMultikernel OS Architecture

CPU

kernel

application

privileged mode

unprivileged mode
serverserver

application

CPU

kernel

application

serverserver

application

CPU

kernel

application

serverserver

application



Critical SystemsCritical Systems
● Mission-critical systems

– Essential to business/organization survival
● E.g. on-line banking, state secrets, transport operation, electric grid

– Usually associated with security properties (protecting computers against humans)
● Fail-safe design

● Safety-critical systems
– Essential to human well-being and survival

● E.g. medical devices, transport control, nuclear power plant control

– Usually associated with safety properties (protecting humans against computers)
● Fail-operational design



Critical SystemsCritical Systems
● Avoiding fundamentally unreliable software architecture

– “To me, writing a monolithic system in 1991 is a truly poor idea.”
[Tanenbaum 1991]

– “There are no demonstrated examples of highly secure or highly robust unstructured 
(monolithic) systems in the history of computing.”
[Shapiro 2006]

– “An operating system is said to be reliable when a typical user has never experienced 
even a single failure in his or her lifetime and does not know anybody who has ever 
experienced a failure.”
[Tanenbaum 2014]

– “If one in million car tires randomly exploding is not acceptable, why is this still 
acceptable in software?”
[Tanenbaum 2021]



Mixed-criticality SystemsMixed-criticality Systems
● Accommodating two types of workloads side-by-side

– High criticality
● Strict requirements on safety, security, real-time behavior, etc.

– Explicit requirements
– Formalized development process

– Low criticality
● Focus on sequential performance and vendor/user customization
● Cost-prohibitive to apply same level of scrutiny as for high criticality

– Lack of explicit and a priori defined requirements and criteria of correctness
– Agile development

– Hardware vs. software separation



Monolithic OS Design Is FlawedMonolithic OS Design Is Flawed
● Biggs S., Lee D., Heiser G.: The Jury Is In: Monolithic OS Design 

Is Flawed: Microkernel-based Designs Improve Security, ACM 
9th Asia-Pacific Workshop on Systems (APSys), 2018
– “While intuitive, the benefits of the small TCB have not been 

quantified to date. We address this by a study of critical Linux CVEs, 
where we examine whether they would be prevented or mitigated 
by a microkernel-based design. We find that almost all exploits are 
at least mitigated to less than critical severity, and 40 % completely 
eliminated by an OS design based on a verified microkernel, such as 
seL4.”

● https://dl.acm.org/doi/10.1145/3265723.3265733

https://dl.acm.org/doi/10.1145/3265723.3265733


Microkernel Design PrinciplesMicrokernel Design Principles
● Component-based architecture

– System composed of isolated components that communicate via well-defined interfaces
● Separation of concerns

– Each component takes care of a specific well-defined functionality and implements it 
well

● Split of mechanism and policy
– Components implement generic mechanisms without implicitly imposing a specific 

policy on the client components
● Least privilege

– Components have a minimal set of privileges required to do their job



Microkernel Emerging PropertiesMicrokernel Emerging Properties
● Fine-grained components

– As opposed to monolithic components
● Minimality of the kernel & trusted computing base

– Most mechanisms do not require the privileged CPU mode
– File systems, most device drivers, security policies, etc., run as user mode 

components
● Modularity

– Replacing component implementation while keeping the interface
● Seamless virtualization

– VMs and tasks are essentially similar entities



Microkernel Emerging PropertiesMicrokernel Emerging Properties
● Loose module coupling

– Configurability via different composition of modules

– Policies in user space and distributed

● Architectural safety, security, reliability and dependability guarantees
– Limiting the “blast radius” of faults at run time

● Architectural enabler for advanced reasoning about correctness
– Certification

– Real-time guarantees

– Formal verification



Practical DifferencesPractical Differences
● Monolithic kernel

– Configurability via compile-time options and parametrization

– Modularity via run-time dynamic linking

– Tight module coupling, weak module cohesion

– Structure is implicit and not enforced (especially at run time)

● Microkernel
– Configurability via different use (policy in user space)

– Modularity via extension in user space

– Loose module coupling, strong module cohesion

– Structure is explicit and enforced (even at run time)



Microkernel OverheadMicrokernel Overhead
● A.k.a. the unfounded anxiety that refuses to die

– Liedtke has shown 30 years ago that the overhead is negligeable (assuming proper microkernel 
design) [1]

– Bershad has argued 33 years ago that the IPC overhead is increasingly irrelevant (since the real-
world performance of computer systems is dominated by other factors) [2]

– The market share of monolithic operating systems is hardly caused by the lack of IPC overhead 
alone

● The market share of Coca Cola is hardly caused by the taste alone
● Real-world microkernel users simply “do not care about the overhead”

– The overall performance is satisfactory to them
– Whatever measurable overhead is there, it is considered a reasonable price for the run-time 

component isolation and the safety/security guarantees that are fundamentally not available in 
monolithic operating systems



Microkernel OverheadMicrokernel Overhead
● OSDI 2024 HongMeng paper [3]

– “ In vehicles, HM achieves a 60% faster boot time and 
a 60% lower cross-domain latency. In smartphones, 
HM achieves 17% shorter app startup time and 10% 
less frame drops [than Linux].”

– “HongMeng is a commercialized general-purpose 
microkernel that retains microkernel principles while 
providing structural supports to address compatibility 
and performance challenges in emerging scenarios. It 
also facilitates future exploration of microkernels’ 
benefits in production. For instance, its flexibility offers 
opportunities to accommodate the increasing 
hardware heterogeneity that Linux fails to address, 
and to achieve fault tolerance for improving 
availability.”



Microkernel OverheadMicrokernel Overhead
● Minimizing the overhead

– Little room for a major improvement purely on the software side

– Improvements on the hardware side still possible
● Mainstream CPUs are designed with monolithic operating systems in mind

– A vicious cycle between CPU design and IPC overhead

● SkyBridge [4]
● User Interrupts on Intel’s x86-64 [5]
● Dedicated SW/HW co-design

– XPC [6]
– Asynchronous IPC and shared memory using cache lines
– Unbound hardware multi-threading
– Hardware capabilities (similar to CHERI, but targeting multiple protection domains)



Microkernel OverheadMicrokernel Overhead

● Amortizing the overhead
– Highly parallel architectures

● Asynchronous communication required anyway for optimal load balancing

– Hererogeneous architectures
● Distributed & disaggregated hardware
● FPGA-based hardware
● Non-cache coherent hardware
● Different ISAs
● Microkernels as universal abstractions for “CPU drivers”



ReferencesReferences
[1] Bershad B. N.: The Increasing Irrelevance of IPC Performance for Micro-Kernel-Based Operating Systems, in Proceedings of the 

Workshop on Micro-Kernels and Other Kernel Architectures, USENIX, 1992, https://dl.acm.org/doi/10.5555/646405.692226

[2] Liedtke J.: On Micro-Kernel Construction, in Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP), 
ACM, 1995, https://dl.acm.org/doi/10.1145/224056.224075

[3] Chen H., Xie M., Jia N., Wang N., Li Y., Liu N., Liu Y., Wang F., Huang Q., Li K., Yang H., Wang H., Yin J., Peng Y., Xu F.: Microkernel 
Goes General: Performance and Compatibility in the HongMeng Production Microkernel, in Proceedings of the 18th USENIX 
Conference on Operating Systems Design and Implementation (OSDI), 2024, https://dl.acm.org/doi/10.5555/3691938.3691963

[4] Mi Z., Li D., Yang Z., Wang X., Chen H.: SkyBridge: Fast and Secure Inter-Process Communication for Microkernels, in 
Proceedings of the 14th EuroSys Conference, 2019, https://dl.acm.org/doi/10.1145/3302424.3303946

[5] Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3: System Programming Guide, Chapter 8: User 
Interrupts, March 2025

[6] Du D., Hua Z., Xia Y., Zang B., Chen H.: XPC: Architectural Support for Secure and Efficient Cross Process Call, in Proceedings of 
the 46th International Symposium on Computer Architecture (ISCA), ACM, 2019, 
https://dl.acm.org/doi/10.1145/3307650.3322218

https://dl.acm.org/doi/10.5555/646405.692226
https://dl.acm.org/doi/10.1145/224056.224075
https://dl.acm.org/doi/10.5555/3691938.3691963
https://dl.acm.org/doi/10.1145/3302424.3303946
https://dl.acm.org/doi/10.1145/3307650.3322218


 

Thank you!
Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

