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• Crash Consistency Problem
• fsck
• Journalling
• Log-structured File Systems
• Soft-Updates

• ZFS

Agenda
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Crash Consistency Problem
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• appending a new block to the file 
involves at least 3 writes to different 
data structures:

• block bitmap - allocate the block
• inode - update e2di_blocks[], 
e2di_size

• data block - actual payload
• what will happen if we fail to make 

some of these changes persistent?
• crash-consistency problem

• File System Inconsistency
• how to deal with?

Traditional UNIX File System
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• a reactive approach
• let the inconsistencies happen and try to find (and eventually fix) them later (on reboot)

• metadata-only based checks
• verify that each allocated block is referenced by exactly one inode

• … but what if it is not??
•  unable to detect corrupted (missing) user data

• does not scale well
• O(file system size)

• improvements?
• check only recently changed data?

• … still useful!

File System Checker, fsck
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1. start a new transaction
2. write all planned change to the journal
3. make sure that all writes to log completed properly

• close the transaction
4. make the actual in-place updates

Journaling, logging

• journal reply
• after crash, on reboot
• walk the journal, find all complete transactions and apply them

6



• journal can be a (preallocated) file within the file system or a dedicated device
• small circular buffer

• UFS: 1MB per 1GB, 64MB max
• types of journals

• physical - stores the actual content of blocks (UFS, ext2, …)
• requires more space but it’s easy to reply

• logical - description of the change (ZFS)
• must be idempotent

• redo or intent - changes to be done (UFS, ZFS, VxFS, …)
• undo - previous content

• undo/redo

Journaling, logging (2)
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• journal aggregation
• do multiple changes in memory, log them together in one transaction
• efficient when updating the same data multiple times
• longer transaction —> more data lost in case of crash

• log rolling
• file system writes primarily the log, some other thread processes the log and performs in-place 

changes
• metadata-only journal

• lower write overhead
• how to deal with data blocks?

• write after the transaction
• inode can point to garbage

• write before the transaction
• block reuse problem

Journaling, logging (3) - improvements
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• “logging file system without the file system”
• never overwrite any data

• write all changed data to an empty 
segment

• fast crash recovery
• long sequential writes and aggressive 

caching
• better I/O bandwidth utilisation

•  disk has finite size
• some sort of garbage collecting needed

• Checkpoint Regions

Log-structured File System
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• segment cleaner (garbage collector)
1. read whole segment(s) into memory
2. write all live data to another free segment(s)

• live data - referenced by an inode
3. mark the original segment as empty

• all live data is constantly moving around, so where is my inode?
• inode map - inode lookup table (array)

• kept in memory
• stored within segments but location is stored in Checkpoint Regions
• can be build from scratch by reading the disk content

Log-structured File System (2)
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• enforces rules for data updates:
• never point to an uninitialised structure (e.g. an inode must be initialised before a dir entry 

references it) 
• never reuse block which is still referenced (e.g. an inode’s pointer must be cleared before the data 

block may be reallocated) 
• never remove existing reference until the new one exists (e.g. do not remove the old dir entry before 

the new one has been written)
• keeps changed blocks in memory, maintains their update dependencies and eventually write them 

asynchronously
• can start using the file system immediately after the crash

• the worst case scenario is a block leak
• run fsck later or on background

• very complex, hard to implement properly

Soft Updates
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ZFS
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• New administrative model
• 2 commands: zpool(8) and zfs(8)
• pooled storage

• eliminates the notion of volumes, slices, …
• dynamically allocated data structures (inodes, …)

• Integrated data protection
• transaction-based
• RAID 0, 1, 10, RAID-Z
• “self-healing” (detects and corrects data corruption)

• Advanced features
• (writable) snapshots, transparent compression, encryption, deduplication, replication, integrated 

NFS & CIFS sharing

ZFS vs traditional File Systems
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ZFS in Solaris
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• ZFS pool
• collection of blocks allocated within a vdev 

hierarchy
• top-level vdev(s)
• physical vdev(s)

• leaf only
• block device or a file

• logical vdev
• implements RAID

• special vdev(s)
• l2arc, log, meta

Pooled Storage Layer, SPA

# zpool status mypool
  pool: mypool
    id: 4340326651853499056
 state: ONLINE
  scan: none requested
config:

        NAME                 STATE      READ WRITE CKSUM
        mypool               ONLINE        0     0     0
          mirror-0           ONLINE        0     0     0
            c1t1d0           ONLINE        0     0     0
            c1t2d0           ONLINE        0     0     0
          /var/tmp/big_file  ONLINE        0     0     0
        logs
          c1t3d0             ONLINE        0     0     0

• ZIO
• pipelined parallel I/O subsystem
• performs aggregation, compression, converts endianity
• calculates and verifies checksums (self-healing)
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• DVA - Disk Virtual Address
• VDEV - top-level vdev number
• ASIZE - allocated size

• LSIZE - logical size
• without compression, RAID-Z or gang 

overhead
• PSIZE - compressed size
• LVL - block level

• 0 … data block
• > 0 … indirect block

• FILL COUNT - number of blkptrs in block
• TYPE - type of pointed object
• BDE - endianess, deduplication, encryption 

Pooled Storage Layer, blkptr_t
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• dbuf (dmu_buf_t)
• in-core data block, stored in ARC
• 512B - 1MB

• object (dnode_t, dnode_phys_t)
• array of dbufs
• ~60 types: DMU_OT_PLAIN_FILE_CONTENTS, DMU_OT_DIRECTORY_CONTENTS,…
• dn_dbufs - list of dbufs
• dn_dirty_records - list of modified dbufs

• objset (objset_t, objset_phys_t)
• set of objects
• os_dirty_dnodes - list of modified dnodes

Data Management Unit, DMU
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• MRU - blocks seen only once recently, c is its target size
• MFU - blocks seen more than once recently, (p - c) is its target size
• arc_adapt()

• p - increase if found in MRU-Ghost, decrease if found in MFU-Ghost
• c - increase to fill available memory

• replacement policy when cache is full: if MRU size is < c, replace in MRU, else replace in MFU
• Hash table

• hash(SPA, DVA, TXG)
• arc_hash_find(), arc_hash_insert()
• arc_promote_buf() - move from MRU to MFU

Adaptive Replacement Cache, ARC
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• Unfortunately, we don’t have infinite memory
• ARC sometimes must shrink and release memory to other consumer 
• arc_reclaim_thread

• evict list - list of unreferenced dbufs —> can be removed
• arc_reaper_thread (Solaris 10)

• forces the SLAB allocator to release as many pages as possible, purge all magazines
• very painful operation

• arc_kill_buf() - move a buffer to the ghost state
• L2ARC

• persistent extension of ARC
• l2arc_feed_thread() moves dbufs from ARC to L2ARC

• l2arc_eligible()

Adaptive Replacement Cache, ARC

20



• adds names to objsets
• creates parent - child relation
• implements snapshots and clones
• maintains properties
• DSL scan - traverses the pool, triggers self-healing

• scrub - scans everything, like fsck(1)
• resilver - scans only txgs when the vdev was missing
• 2 phases:

1. collect blocks to scan and sort them by offset
2. scan blocks sequentially 

• ZFS stream
• serialised dataset(s)

Dataset and Snapshot Layer, DSL
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• ZPL
• creates a POSIX-like file system on top of DSL dataset
• znode_t, zfsvfs_t

• System Atributes (SA)
• portion of znode with variable layout to accommodate various attributes (ACLs)

• ZVOL
• creates a block device on top of DSL dataset

• have entries in /dev/zvol/[r]dsk
• can be shared via COMSTAR

• iSCSI, FC target
• direct access to DMU & ARC, Remote DMA

ZFS POSIX Layer, ZPL & ZFS Volumes
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zfs_putapage(vnode, page, off, len, …):

    dmu_tx_t *tx = dmu_tx_create(vnode->zfsvfs->z_os);

    dmu_tx_hold_write(tx, vnode->zp->z_id, off, len);

    err = dmu_tx_assign(tx, TXG_NOWAIT);

    if (err)

          dmu_tx_abort(tx); 

          return;

    dmu_buf_hold_array(z_os, z_id, off, len, ..., &dbp);

    bcopy(page, dbp[]->db_db_data);

    dmu_buf_rele_array(dbp,…);

    dmu_tx_commit(tx);

Write to file (1)

dmu_buf_t **dbp
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• what we are going to modify?

Write to file (2), dmu_tx_hold_* 

dmu_tx {
list_t tx_holds;
objset_t 
*tx_objset;
int tx_txg;
…

}

dmu_tx_hold {
dnode_t txh_dnode;
int txh_space_towrite;
int txh_space_tofree;
…

}

• dmu_tx_hold_free(), dmu_tx_hold_bonus(), …
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• assign the tx to the open TXG

Write to file (3), dmu_tx_assign()

dmu_tx_try_assign(tx):
for txh in tx->tx_holds:
towrite += txh->txh_space_towrite;
tofree += txh->txh_space_tofree;

[…]
dsl_pool_tempreserve_space();

dsl_pool_tempreserve_space():
if (towrite + used > quota)
return (ENOSPC);

if (towrite > arc->avail)
return (ENOMEM);

if (towrite > write_limit)
return (ERESTART);

...
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• each TXG goes through 3-stage DMU pipeline:
• open

• accepts new dmu_tx_assign()
• quiescing

• waits for every TX to call dmu_tx_commit()
• txg_quiesce_thread()

• syncing
• writes changes to disks
• txg_sync_thread()

• spa_sync()

Write to file (4), TXG Life Cycle
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Write to file (4), Sync Phase
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Write to file (4), Sync Phase

28



Write to file (4), Sync Phase
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Write to file (4), Sync Phase
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• depending on the IO type, dbuf properties etc ZIO goes through different stages of the ZIO pipeline:

• ZIO_STAGE_WRITE_BP_INIT - data compression
• ZIO_STAGE_ISSUE_ASYNC - moves ZIO processing to taskq(9F)
• ZIO_STAGE_CHECKSUM_GENERATE - checksum calculation
• ZIO_STAGE_DVA_ALLOCATE - block allocation, metaslab_alloc_dva()
• ZIO_STAGE_READY - synchronisation
• ZIO_STAGE_VDEV_IO_START - start the write by calling vdev_op_io_start method
• ZIO_STAGE_VDEV_IO_DONE
• ZIO_STAGE_VDEV_IO_ASSES - handle eventual write error

Write to file (5), ZIO
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• none
• free = not-allocated —> not necessary to track free space explicitly
• CP/M, FAT

• bitmap
• array of bits, each bit represents a data block.
• for 8K block: 16K ~ 1G, 16M ~ 1TB, 16G ~ 1PB

• slow to scan
• B-Tree of extents

• alloc is much better
• slow random frees

• deferred frees
• keep list of recently freed blocks in memory

Free Space tracking
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• each top-level vdev is split into 200 metaslabs
• don’t need to keep inactive metaslabs in RAM

• each meta slab has associated a space map
• in core - AVL trees of extents, sorted:

• by offset - easy to coalesce extents
• by size - for searching by extent size

• on disk - time ordered log of allocations and frees
• append-only
• destroy and recreate from the tree when log is too big
• the last block is kept in ARC

Space Allocation in ZFS (1)
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• space change entry
    1               47                   1           15
  ,-----------------------------------------------------------.
  | 0 |   offset (sm_shift units)    | type |       run       |
  `-----------------------------------------------------------'
   63  62                          17   16   15               0

• offset - offset of the extent within the metaslab (up to 64P or 512PB)
• type - 0 = alloc
• run - length of the extent

• up to 16M or 128MB
• time stamp entry
    1      3         10                     50
  ,---+--------+------------+---------------------------------.
  | 1 | action |  syncpass  |        txg (lower bits)         |
  `---+--------+------------+---------------------------------'
   63  62    60 59        50 49                               0

Space Allocation in ZFS (2)
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[     0] ALLOC: txg 16182345, pass 1
[     1]    A  range: 0x100000a000-0x100000a400  size: 0x0400
[     2]    A  range: 0x1000024200-0x1000041400  size: 0x1d200
[...]
[ 21219] ALLOC: txg 16182345, pass 2
[ 21220]    A  range: 0x108794da00-0x1087958e00  size: 0xb400
[ 21221]    A  range: 0x126cd48c00-0x126cd59400  size: 0x10800
[...]
[ 21224] FREE: txg 16182345, pass 2
[ 21225]    F  range: 0x101e894c00-0x101e8a6000  size: 0x11400
[ 21226]    F  range: 0x10165c5600-0x10165c6200  size: 0x0c00
[...]
[ 21272] ALLOC: txg 16182345, pass 3
[ 21273]    A  range: 0x1087958e00-0x1087959600  size: 0x0800
[ 21274]    A  range: 0x1142c29a00-0x1142c29c00  size: 0x0200
[ 21275] ALLOC: txg 16182345, pass 4
[ 21276]    A  range: 0x1087959600-0x108795a400  size: 0x0e00
[ 21277]    A  range: 0x101db25e00-0x101db29e00  size: 0x4000
[ 21278] ALLOC: txg 16182345, pass 5
[ 21279]    A  range: 0x101db29e00-0x101db49e00  size: 0x20000

Space Allocation in ZFS (3)
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• several different approaches over time
• metaslab_ff_alloc

• First Fit, with cursor for different block sizes
• block size aligned offsets
• sequential walk for more full metaslabs

• metaslab_df_alloc

• do First Fit for up to 70% (96%) full metaslabs, then do Best Fit
• added 2nd AVL tree sorted by size

• “clump” allocator

• tries to find regions of multiple of requested size, expects more allocations of the same size to 
follow

Space Allocation in ZFS (4)
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• gang block
• build a larger block from smaller ones
• gang header

• array of blkptrs to leaf blocks
• adds 2 new ZIO stages

• ZIO_STAGE_GANG_ASSEMBLE
• ZIO_STAGE_GANG_ISSUE

• is log always better than a bitmap?
• worst case scenario: 1G metaslab with 4K blocks
• needs 1MB of log entries
• only 32KB of bitmap

Space Allocation in ZFS (5) - Free Space Fragmentation
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Thank you!

Q&A
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