
Advanced File Systems and ZFS

Jan Šenolt
Jan.Senolt@Oracle.COM
Solaris Engineering
May 6, 2021

1

mailto:jan.Senolt@Oracle.COM
mailto:jan.Senolt@Oracle.COM

• Crash Consistency Problem
• fsck
• Journalling
• Log-structured File Systems
• Soft-Updates

• ZFS

Agenda

2

Crash Consistency Problem

3

• appending a new block to the file
involves at least 3 writes to different
data structures:

• block bitmap - allocate the block
• inode - update e2di_blocks[],
e2di_size

• data block - actual payload
• what will happen if we fail to make

some of these changes persistent?
• crash-consistency problem

• File System Inconsistency
• how to deal with?

Traditional UNIX File System

4

• a reactive approach
• let the inconsistencies happen and try to find (and eventually fix) them later (on reboot)

• metadata-only based checks
• verify that each allocated block is referenced by exactly one inode

• … but what if it is not??
• unable to detect corrupted (missing) user data

• does not scale well
• O(file system size)

• improvements?
• check only recently changed data?

• … still useful!

File System Checker, fsck

5

1. start a new transaction
2. write all planned change to the journal
3. make sure that all writes to log completed properly

• close the transaction
4. make the actual in-place updates

Journaling, logging

• journal reply
• after crash, on reboot
• walk the journal, find all complete transactions and apply them

6

• journal can be a (preallocated) file within the file system or a dedicated device
• small circular buffer

• UFS: 1MB per 1GB, 64MB max
• types of journals

• physical - stores the actual content of blocks (UFS, ext2, …)
• requires more space but it’s easy to reply

• logical - description of the change (ZFS)
• must be idempotent

• redo or intent - changes to be done (UFS, ZFS, VxFS, …)
• undo - previous content

• undo/redo

Journaling, logging (2)

7

• journal aggregation
• do multiple changes in memory, log them together in one transaction
• efficient when updating the same data multiple times
• longer transaction —> more data lost in case of crash

• log rolling
• file system writes primarily the log, some other thread processes the log and performs in-place

changes
• metadata-only journal

• lower write overhead
• how to deal with data blocks?

• write after the transaction
• inode can point to garbage

• write before the transaction
• block reuse problem

Journaling, logging (3) - improvements

8

• “logging file system without the file system”
• never overwrite any data

• write all changed data to an empty
segment

• fast crash recovery
• long sequential writes and aggressive

caching
• better I/O bandwidth utilisation

• disk has finite size
• some sort of garbage collecting needed

• Checkpoint Regions

Log-structured File System

9

• segment cleaner (garbage collector)
1. read whole segment(s) into memory
2. write all live data to another free segment(s)

• live data - referenced by an inode
3. mark the original segment as empty

• all live data is constantly moving around, so where is my inode?
• inode map - inode lookup table (array)

• kept in memory
• stored within segments but location is stored in Checkpoint Regions
• can be build from scratch by reading the disk content

Log-structured File System (2)

10

• enforces rules for data updates:
• never point to an uninitialised structure (e.g. an inode must be initialised before a dir entry

references it)
• never reuse block which is still referenced (e.g. an inode’s pointer must be cleared before the data

block may be reallocated)
• never remove existing reference until the new one exists (e.g. do not remove the old dir entry before

the new one has been written)
• keeps changed blocks in memory, maintains their update dependencies and eventually write them

asynchronously
• can start using the file system immediately after the crash

• the worst case scenario is a block leak
• run fsck later or on background

• very complex, hard to implement properly

Soft Updates

11

• M. K. McKusick: “Improving the Performance of fsck in FreeBSD”, ;login, 2013
• Stephen C. Tweedie: “Journaling the Linux ext2fs Filesystem”, Proceeding of the 4th Annual LinuxExpo,

1998
• M. Rosenblum, J. K. Ousterhout: “The Design and Implementation of a Log-Structured File System”,

ACM Transactions, February 1992
• V. Aurora: "Soft updates, hard problems”, LWN, 2009

References

12

https://www.usenix.org/system/files/login/articles/05a_mckusick_020-023_online.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/LFS.pdf
https://lwn.net/Articles/339337/
https://www.usenix.org/system/files/login/articles/05a_mckusick_020-023_online.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/LFS.pdf
https://lwn.net/Articles/339337/

ZFS

13

• New administrative model
• 2 commands: zpool(8) and zfs(8)
• pooled storage

• eliminates the notion of volumes, slices, …
• dynamically allocated data structures (inodes, …)

• Integrated data protection
• transaction-based
• RAID 0, 1, 10, RAID-Z
• “self-healing” (detects and corrects data corruption)

• Advanced features
• (writable) snapshots, transparent compression, encryption, deduplication, replication, integrated

NFS & CIFS sharing

ZFS vs traditional File Systems

14

ZFS in Solaris

15

• ZFS pool
• collection of blocks allocated within a vdev

hierarchy
• top-level vdev(s)
• physical vdev(s)

• leaf only
• block device or a file

• logical vdev
• implements RAID

• special vdev(s)
• l2arc, log, meta

Pooled Storage Layer, SPA

zpool status mypool
 pool: mypool
 id: 4340326651853499056
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c1t1d0 ONLINE 0 0 0
 c1t2d0 ONLINE 0 0 0
 /var/tmp/big_file ONLINE 0 0 0
 logs
 c1t3d0 ONLINE 0 0 0

• ZIO
• pipelined parallel I/O subsystem
• performs aggregation, compression, converts endianity
• calculates and verifies checksums (self-healing)

16

• DVA - Disk Virtual Address
• VDEV - top-level vdev number
• ASIZE - allocated size

• LSIZE - logical size
• without compression, RAID-Z or gang

overhead
• PSIZE - compressed size
• LVL - block level

• 0 … data block
• > 0 … indirect block

• FILL COUNT - number of blkptrs in block
• TYPE - type of pointed object
• BDE - endianess, deduplication, encryption

Pooled Storage Layer, blkptr_t

17

• dbuf (dmu_buf_t)
• in-core data block, stored in ARC
• 512B - 1MB

• object (dnode_t, dnode_phys_t)
• array of dbufs
• ~60 types: DMU_OT_PLAIN_FILE_CONTENTS, DMU_OT_DIRECTORY_CONTENTS,…
• dn_dbufs - list of dbufs
• dn_dirty_records - list of modified dbufs

• objset (objset_t, objset_phys_t)
• set of objects
• os_dirty_dnodes - list of modified dnodes

Data Management Unit, DMU

18

• MRU - blocks seen only once recently, c is its target size
• MFU - blocks seen more than once recently, (p - c) is its target size
• arc_adapt()

• p - increase if found in MRU-Ghost, decrease if found in MFU-Ghost
• c - increase to fill available memory

• replacement policy when cache is full: if MRU size is < c, replace in MRU, else replace in MFU
• Hash table

• hash(SPA, DVA, TXG)
• arc_hash_find(), arc_hash_insert()
• arc_promote_buf() - move from MRU to MFU

Adaptive Replacement Cache, ARC

19

• Unfortunately, we don’t have infinite memory
• ARC sometimes must shrink and release memory to other consumer
• arc_reclaim_thread

• evict list - list of unreferenced dbufs —> can be removed
• arc_reaper_thread (Solaris 10)

• forces the SLAB allocator to release as many pages as possible, purge all magazines
• very painful operation

• arc_kill_buf() - move a buffer to the ghost state
• L2ARC

• persistent extension of ARC
• l2arc_feed_thread() moves dbufs from ARC to L2ARC

• l2arc_eligible()

Adaptive Replacement Cache, ARC

20

• adds names to objsets
• creates parent - child relation
• implements snapshots and clones
• maintains properties
• DSL scan - traverses the pool, triggers self-healing

• scrub - scans everything, like fsck(1)
• resilver - scans only txgs when the vdev was missing
• 2 phases:

1. collect blocks to scan and sort them by offset
2. scan blocks sequentially

• ZFS stream
• serialised dataset(s)

Dataset and Snapshot Layer, DSL

21

• ZPL
• creates a POSIX-like file system on top of DSL dataset
• znode_t, zfsvfs_t

• System Atributes (SA)
• portion of znode with variable layout to accommodate various attributes (ACLs)

• ZVOL
• creates a block device on top of DSL dataset

• have entries in /dev/zvol/[r]dsk
• can be shared via COMSTAR

• iSCSI, FC target
• direct access to DMU & ARC, Remote DMA

ZFS POSIX Layer, ZPL & ZFS Volumes

22

zfs_putapage(vnode, page, off, len, …):

 dmu_tx_t *tx = dmu_tx_create(vnode->zfsvfs->z_os);

 dmu_tx_hold_write(tx, vnode->zp->z_id, off, len);

 err = dmu_tx_assign(tx, TXG_NOWAIT);

 if (err)

 dmu_tx_abort(tx);

 return;

 dmu_buf_hold_array(z_os, z_id, off, len, ..., &dbp);

 bcopy(page, dbp[]->db_db_data);

 dmu_buf_rele_array(dbp,…);

 dmu_tx_commit(tx);

Write to file (1)

dmu_buf_t **dbp

23

• what we are going to modify?

Write to file (2), dmu_tx_hold_*

dmu_tx {
list_t tx_holds;
objset_t
*tx_objset;
int tx_txg;
…

}

dmu_tx_hold {
dnode_t txh_dnode;
int txh_space_towrite;
int txh_space_tofree;
…

}

• dmu_tx_hold_free(), dmu_tx_hold_bonus(), …

24

• assign the tx to the open TXG

Write to file (3), dmu_tx_assign()

dmu_tx_try_assign(tx):
for txh in tx->tx_holds:
towrite += txh->txh_space_towrite;
tofree += txh->txh_space_tofree;

[…]
dsl_pool_tempreserve_space();

dsl_pool_tempreserve_space():
if (towrite + used > quota)
return (ENOSPC);

if (towrite > arc->avail)
return (ENOMEM);

if (towrite > write_limit)
return (ERESTART);

...

25

• each TXG goes through 3-stage DMU pipeline:
• open

• accepts new dmu_tx_assign()
• quiescing

• waits for every TX to call dmu_tx_commit()
• txg_quiesce_thread()

• syncing
• writes changes to disks
• txg_sync_thread()

• spa_sync()

Write to file (4), TXG Life Cycle

26

Write to file (4), Sync Phase

27

Write to file (4), Sync Phase

28

Write to file (4), Sync Phase

29

Write to file (4), Sync Phase

30

• depending on the IO type, dbuf properties etc ZIO goes through different stages of the ZIO pipeline:

• ZIO_STAGE_WRITE_BP_INIT - data compression
• ZIO_STAGE_ISSUE_ASYNC - moves ZIO processing to taskq(9F)
• ZIO_STAGE_CHECKSUM_GENERATE - checksum calculation
• ZIO_STAGE_DVA_ALLOCATE - block allocation, metaslab_alloc_dva()
• ZIO_STAGE_READY - synchronisation
• ZIO_STAGE_VDEV_IO_START - start the write by calling vdev_op_io_start method
• ZIO_STAGE_VDEV_IO_DONE
• ZIO_STAGE_VDEV_IO_ASSES - handle eventual write error

Write to file (5), ZIO

31

• none
• free = not-allocated —> not necessary to track free space explicitly
• CP/M, FAT

• bitmap
• array of bits, each bit represents a data block.
• for 8K block: 16K ~ 1G, 16M ~ 1TB, 16G ~ 1PB

• slow to scan
• B-Tree of extents

• alloc is much better
• slow random frees

• deferred frees
• keep list of recently freed blocks in memory

Free Space tracking

32

• each top-level vdev is split into 200 metaslabs
• don’t need to keep inactive metaslabs in RAM

• each meta slab has associated a space map
• in core - AVL trees of extents, sorted:

• by offset - easy to coalesce extents
• by size - for searching by extent size

• on disk - time ordered log of allocations and frees
• append-only
• destroy and recreate from the tree when log is too big
• the last block is kept in ARC

Space Allocation in ZFS (1)

33

• space change entry
 1 47 1 15
 ,---.
 | 0 | offset (sm_shift units) | type | run |
 `---'
 63 62 17 16 15 0

• offset - offset of the extent within the metaslab (up to 64P or 512PB)
• type - 0 = alloc
• run - length of the extent

• up to 16M or 128MB
• time stamp entry
 1 3 10 50
 ,---+--------+------------+---------------------------------.
 | 1 | action | syncpass | txg (lower bits) |
 `---+--------+------------+---------------------------------'
 63 62 60 59 50 49 0

Space Allocation in ZFS (2)

34

[0] ALLOC: txg 16182345, pass 1
[1] A range: 0x100000a000-0x100000a400 size: 0x0400
[2] A range: 0x1000024200-0x1000041400 size: 0x1d200
[...]
[21219] ALLOC: txg 16182345, pass 2
[21220] A range: 0x108794da00-0x1087958e00 size: 0xb400
[21221] A range: 0x126cd48c00-0x126cd59400 size: 0x10800
[...]
[21224] FREE: txg 16182345, pass 2
[21225] F range: 0x101e894c00-0x101e8a6000 size: 0x11400
[21226] F range: 0x10165c5600-0x10165c6200 size: 0x0c00
[...]
[21272] ALLOC: txg 16182345, pass 3
[21273] A range: 0x1087958e00-0x1087959600 size: 0x0800
[21274] A range: 0x1142c29a00-0x1142c29c00 size: 0x0200
[21275] ALLOC: txg 16182345, pass 4
[21276] A range: 0x1087959600-0x108795a400 size: 0x0e00
[21277] A range: 0x101db25e00-0x101db29e00 size: 0x4000
[21278] ALLOC: txg 16182345, pass 5
[21279] A range: 0x101db29e00-0x101db49e00 size: 0x20000

Space Allocation in ZFS (3)

35

• several different approaches over time
• metaslab_ff_alloc

• First Fit, with cursor for different block sizes
• block size aligned offsets
• sequential walk for more full metaslabs

• metaslab_df_alloc

• do First Fit for up to 70% (96%) full metaslabs, then do Best Fit
• added 2nd AVL tree sorted by size

• “clump” allocator

• tries to find regions of multiple of requested size, expects more allocations of the same size to
follow

Space Allocation in ZFS (4)

36

• gang block
• build a larger block from smaller ones
• gang header

• array of blkptrs to leaf blocks
• adds 2 new ZIO stages

• ZIO_STAGE_GANG_ASSEMBLE
• ZIO_STAGE_GANG_ISSUE

• is log always better than a bitmap?
• worst case scenario: 1G metaslab with 4K blocks
• needs 1MB of log entries
• only 32KB of bitmap

Space Allocation in ZFS (5) - Free Space Fragmentation

37

Thank you!

Q&A

38

39

