
Service Management with systemd

Michal Sekletár
msekleta@redhat.com

April 15, 2021

whoami

Principal Software Engineer @ Red Hat

systemd maintainer for Red Hat Enterprise Linux

Open source software contributor

2 / 53

Agenda

systemd recap

Cgroup v2 and resource management

Service sandboxing

3 / 53

PART I

PART I: systemd 101

4 / 53

What is systemd?

Implementation of the init process, PID 1

Service manager

Compatible with SysVinit (modulo Documented incompatibilities)

Open source project that provides basic user-space for Linux
distributions

Growing community of developers and users (All Systems Go!)

5 / 53

https://www.freedesktop.org/wiki/Software/systemd/Incompatibilities/

Components of systemd

systemd init

udevd Dynamic device
management

journald Log aggregator

logind Session tracking

resolved Caching DNS
resolver

networkd Network
configuration service

homed Management of home
directories

machined VM/container
registry

localed DBus API for locale
and language settings

hostnamed Hostname setting

timedated Time synchronization
DBus API

timesyncd Implements sNTP

nspawn Simple container
runtime

6 / 53

Units

systemd is dependency based execution engine

Dependencies are relations

Relations are defined on set of objects

Objects that systemd manages are called ”units”

7 / 53

Unit types

service

target

socket

mount

automount

swap

device

path

timer

slice

scope

See man systemd.service, systemd.socket, . . . , for more information.

8 / 53

Unit files

systemd’s units abstract system entities (resources)

Units are created from various sources

For example, mount unit may exist because administrator
mounted a filesystem

Most of the time however, units we deal with (services, sockets)
exist because there is config file of the same name

Unit files are simple text files in .ini format

9 / 53

Unit file – example

/usr/lib/systemd/system/cups.service

[Unit]

Description=CUPS Scheduler

Documentation=man:cupsd(8)

After=network.target

[Service]

ExecStart=/usr/sbin/cupsd -l

Type=notify

[Install]

Also=cups.socket cups.path

WantedBy=printer.target

10 / 53

Unit files – Hierarchy of configuration

systemd loads unit files from following directories1,

1 /etc/systemd/system – Owned by administrator

2 /run/systemd/system – Runtime configuration, i.e. affects only
single boot

3 /usr/lib/systemd/system – Configuration shipped by the
distribution

When there are two configuration files with the same name then
systemd will load only one from the directory that is highest in the
hierarchy. For example, configuration in /etc always overrides
configuration in /usr.
After changing configuration it is necessary to reload systemd,
systemctl daemon-reload

1systemd-analyze unit-paths
11 / 53

Difference between unit and unit file

This aspect of systemd is often confusing to new users

It is important to recognize that there is a difference between units
and unit files

Mostly because SysVinit didn’t track any service state and hence
it didn’t have this concept

12 / 53

Dependency model in systemd

Dependencies are very important concept to understand in order
to be effective while working with systemd

In the previous part of the tutorial we talked about units and unit
files. Units are objects managed by systemd

Dependencies are associations between them

Each unit type has some default dependencies (unless configured
otherwise)

What types of dependencies there are,

Relational dependencies
Ordering dependencies

13 / 53

Relational dependencies

Wants – a unit should be started alongside with wanted unit

Requires – a unit should be started alongside with required unit
and if start of required unit fails then stop the former unit

BindsTo – lifetime of two units is bound together (stronger than
Requires)

Requisite – requisitioned unit must be started already

PartOf – dependency that propagates stop and restart actions

Conflicts – ”negative” dependency, i.e. conflicting units can’t run
at the same time

14 / 53

Ordering dependencies

Names of relational dependencies sort of suggest ordering, but don’t be
fooled. Ordering between units is undefined unless explicitly specified.
Naturally, systemd provides two types of ordering dependencies,

After

Before

It is important to realize that ordering and relational dependencies are
orthogonal and you can use ordering dependencies without defining
any other relations between units.

15 / 53

Transactions

systemd also implements very minimal transaction logic.

Every request (e.g. start or stop of a unit) is evaluated as a single
transaction.

systemd puts together transactions containing job objects
(actions).

systemd tries to carry out minimum amount of work/jobs.

We examine a high-level overview of the transaction logic on the
next slide.

16 / 53

Transactions

1 Create job for the specified unit (anchor)

2 Add recursively jobs for all dependencies

3 Minimize the transaction in a loop
4 1 Get rid of NOP jobs

2 Get rid of jobs not referenced by anchor

5 1 Check for ordering loops in the graph in a loop
2 Break the loop by deleting a job

6 Get rid of jobs not referenced by anchor

7 Merge merge-able jobs

8 Get rid of jobs not referenced by anchor

9 Merge jobs with similar one already in job queue

10 Add the jobs to job queue

17 / 53

Interesting options related to dependencies

DefaultDependencies – Don’t add default deps. of a given unit type

CollectMode – Influence garbage collection logic (inactive-or-failed)

systemctl list-jobs --after/--before

18 / 53

Service management – Basics

Start the service
systemctl start httpd.service2s

Stop the service
systemctl stop httpd.service

Restart service
systemctl restart httpd.service

Reload service
systemctl reload httpd.service

Send user defined signal to the service
systemctl --signal=SIGUSR1 kill httpd.service

2You don’t actually need to type .service, because service is default unit type
19 / 53

Service management – Managing unit files

Enable service to start after a reboot,
systemctl enable httpd.service

Make service disabled, i.e. systemd won’t attempt to start it after
reboot,
systemctl disable httpd.service

Reset to default unit file state,
systemctl preset httpd.service

List all unit files,
systemctl list-unit-files

Determine current enablement state,
systemctl is-enabled httpd.service

Mask a unit file. Note that masked units can’t be started, even
when they are requested as dependencies,
systemctl mask httpd.service

Notice that operations acting on unit files create or remove symlinks in
the filesystem. To achieve the same end result you could create
symlinks on your own.

20 / 53

Service management – Unit file [Install] section

Let’s consider this example [Install] section,

[Install]

WantedBy=multi-user.target

Also=sysstat-collect.timer

Also=sysstat-summary.timer

Alias=monitoring.service

What happens when we enable such unit file?

systemd will enable sysstat.service in multi-user.target

(runlevel 3)

systemd will also enable sysstat-collect.timer and
sysstat-summary.timer units according to their [Install]
sections

systemd will create alias monitoring.service and we will be able
to use it in our follow-up work with the unit

21 / 53

Service management – Extending unit files

We already understand hierarchical nature of systemd’s
configuration

Configuration stored in /usr is overwritten on updates

There are multiple ways how to change or extend distribution
supplied configuration,

One can copy configuration file from /usr/lib/systemd/system to
/etc/systemd/system and edit it there
Or you can use configuration drop-ins. This is actually best practice

In order to create drop-in, you need to do following,
1 Create directory named after service but with .d suffix, e.g.

/etc/systemd/system/mariadb.service.d
2 Create configuration files in the directory. File should have .conf

suffix
3 Write part of the configuration that we want to add

Drop-in configuration is shown in status output of the service

Also configuration of systemd itself can be extended using
drop-ins.

22 / 53

Service management – Important unit files options

ExecStart – Main service binary

ExecStop – Stop command (must have synchronous behavior)

ExecReload – Governs how to reload service (restart 6= reload)

KillMode – Which processes get killed

Type – Tells systemd how to treat service start-up

Restart – Whether to restart always or only on certain events

PIDFile – Relevant only for forking services. Nevertheless, very
important

RemainAfterExit – Used to implement idem-potency for oneshot
services

StandardInput – Allows you make socket a stdin of the service

23 / 53

Service management – Service types

Type of the service determines when systemd assumes that service is
started and ready to serve clients,

simple – Basic (default) type. Service is considered running
immediately after fork()

exec – Service is considered running after succesful execution of
the service binary.

oneshot – As name implies this type is used for short running
services (systemd blocks until oneshot finishes)

forking – Traditional UNIX double forking daemons

notify – Service itself informs systemd that it finished startup

dbus – Service considered up once bus name appears on system bus

idle – Similar to simple, but service is started only after all other
jobs were dispatched

24 / 53

PART II

PART II: Resource management and workload isolation

25 / 53

Resource management – Control groups

Control groups (cgroups) is a Linux subsystem that has two main
purposes,

Process tracking

Resource distribution

26 / 53

Resource management – Control groups - terminology

Cgroup – associates a set of tasks with a set of parameters for one
or more controllers.

Controller – entity that schedules a resource or applies per-cgroup
limits

Hierarchy – Set of cgroups arranged in a tree, such that every
process is in exactly one of the cgroups

27 / 53

Resource management – cgroup v1 and cgroup v2

Multiple hierarchies – cgroup v1 is a legacy kernel interface of
the cgroup subsystem. Main difference between cgroup v1 and v2
is in the number of hierarchies. With cgroup v1 each controller is
usually mounted separatelly, e.g. /sys/fs/cgroup/memory,
/sys/fs/cgroup/systemd, /sys/fs/cgroup/cpu,cpuacct.

No processes in internal nodes – cgroup v2 requires processes
to reside only in the leaf nodes of the hierarchy for the purposes of
resource distribution.

Delegation – Parts of the cgroup tree can be delegated to less
privileged users (via granting write access to cgroup interface files,
cgroup.procs, cgroup.threads and cgroup.subtree control) or via
cgroup namespace and nsdelegate mount option.

Single writer – In cgroup v2 the resource distribution should be
governed by the single entity (preferably systemd) in
non-delegated parts of the cgroup tree.

28 / 53

Resource management – Resource distribution models

Weights
Resource is distributed by adding up the weights of all sub-cgroups
and giving each the fraction matching its ratio against the sum.
Usually used to distribute stateless resources (CPU time)
Example: cpu.weight ([1-10000], default 100)

Limits
Cgroup can consume up to configured amount of the resource
Overcommit is allowed (i.e. sum of sub-cgroup limits can exceed
limit of the parent cgroup)
Example: memory.max

Protections
Cgroup is protected (but not guaranteed) upto configured amount
of the resource
Overcommit is also allowed
Example: memory.low

Allocations
Exclusive allocations of the absolute amount of a finite resource
Overcommit is not allowed
Example: cpu.rt.max (real-time budget)

29 / 53

Resource management – Control groups and systemd

systemd uses cgroups heavily, however it doesn’t bother user with
low-level cgroup interfaces. Instead it provides following high-level
concepts,

Service – Normal service units. Each service has its own cgroup.

Scope – Similarly to services, scope’s processes are also part of the
cgroup. However, scope processes are not children of systemd

Slice – Services and scopes can be further partitioned into slices.

To get an overview of current cgroup hierarchy on your system, you
can run systemd-cgls command.

30 / 53

Resource management – Control groups hierarchy

Control group /:

-.slice

user.slice

user-0.slice

session-6.scope

27 login -- root

34 -bash

52 systemd-cgls

53 systemd-cgls

user@0.service

init.scope

28 /usr/lib/systemd/systemd --user

29 (sd-pam)

init.scope

1 /usr/lib/systemd/systemd

system.slice

dbus.service

23 /usr/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile

systemd-logind.service

22 /usr/lib/systemd/systemd-logind

systemd-resolved.service

21 /usr/lib/systemd/systemd-resolved

systemd-journald.service

15 /usr/lib/systemd/systemd-journald

31 / 53

Resource management – CPU

CPU controller in cgroup v2 has multiple configuration options for
controlling how much CPU time is allocated to processes in cgroup.
systemd provides configuration to adjust,

CPUWeight – Set the value of ”cpu.weight” cgroup property

CPUQuota -– Absolute value of CPU usage in percent

Note that default value of CPUWeight for every service is 100.

All cgroup related options must appear in [Service] section of the unit
file.

32 / 53

Resource management – Memory

Partitioning available memory with systemd and cgroup v2 memory
controller is rather complicated. Multiple options are available,

MemoryMin – Hard memory protection. If memory usage is
below the limit the cg memory won’t be reclaimed.

MemoryLow – Soft memory protection. If memory usage is below
the limit the cg memory can be reclaimed only if there is no
memory to be reclaimed from unprotected cgroups.

MemoryHigh – Memory throttle limit. If memory usage goes
above the limit the processes in the cgroup are throttled and put
under heavy reclaim pressure.

MemoryMax – Hard limit for memory usage. You can use K, M,
G, T suffixes (e.g. MemoryMax=1G).

MemorySwapMax – Hard limit on swap usage.

After you exhaust your memory limit then service is very likely to get
killed by OOM killer. To prevent that you need to adjust
OOMScoreAdjust value as well.

33 / 53

Resource management – Block I/O

Block I/O controller in cgroup v2 allows for quite fine grained tuning.
systemd provides following options for configuring this subsystem,

IOWeight – Set the default IO weight

IODeviceWeight – Set the IO weight for a specific block device
(e.g. IODeviceWeight=/dev/sda 200)

IOReadBandwidthMax, IOWriteBandwidthMax – Absolute
per device (or mount point) bandwidth. E.g.
IOWriteBandwith=/var/log 5M

IOReadIOPSMax, IOWriteIOPSMax – Same as the above,
except that bandwith is configured in IOPS

IOLatency – Define the per device I/O latency target (e.g.
IOLatency=/dev/sda 10ms)

34 / 53

Resource management – CPU and NUMA placement

CPUAffinity – Set CPU Affinity mask for the unit.

NUMAMask – Set NUMA mask for the unit (e.g.
NUMAMask=2, allow memory allocations only on NUMA node 2)

NUMAPolicy – Set NUMA memory allocation policy for the
service (e.g. NUMAPolicy=bind)

AllowedCPUs – Restrict a unit to run only on selected CPUs.

AllowedMemoryNodes – Restrict a unit to be able to allocate
memory only on selected NUMA nodes.
Note that CPUAffinity, NUMAMask and NUMAPolicy can’t be
changed during the service runtime.

35 / 53

Resource management – Task limits

Using the pid cgroup controller you can limit number of processes that
unit is allowed to spawn,

TasksMax – Set the maximum number of processes that unit can
create using fork() or clone().

36 / 53

Resource management – Dynamic reconfiguration

It is trivial to set or adjust resource management configuration
options at runtime.

All of the previously discussed options are available via
systemd-run or through D-Bus APIs

systemd-run is a command line tool that allows you to run ad-hoc
commands in systemd context

Once you have the comamnd wrapped as the unit you can use
systemctl set-property to set resource management policies

37 / 53

Resource management – Excercise: Database and low
priority batch job

Propose a resource management policy expressed in terms of systemd
unit file options that achieves following goals,

Database gets more CPU time allocated over batch job

Make sure that database is able to use up to 8GB of memory with
incuring memory pressure

Make sure batch job memory usage can’t go over 1GB

Set a restart policy on the database

Decrease the chance of killing the database by OOM killer

38 / 53

Resource management – Solution

Increase CPUShares value for the important workload

Set MemoryLow=8G memory protection for the main workload

Set MemoryMax=1G limit for the batch job

Restart=always

OOMScoreAdjust=-900

39 / 53

Resource management – Excercise: Critical workload

You have a mission critical workload running on the server and you
want to make sure that it runs undisturbed whenever possible. Our
goals are,

Workload is running isolated on a subset of CPUs

Workload can use all memory on NUMA nodes corresponding to
those CPUs

System services are allowed to consume only 1GB of system
memory until memory reclaim pressure is applied

40 / 53

Resource management – Solution

isolcpus kernel command line argument

Set CPUAffinity=0 in system.conf

CPUAffinity in the unit file to all other CPUs

Set NUMAMask=0 in system.conf

NUMAMask set to remaining NUMA nodes for the workload

MemoryHigh=1GB on system.slice

41 / 53

PART III

PART III: Service sandboxing

42 / 53

Sandboxing – Linux Namespaces

Feature provided by Linux

Used to virtualize various global system resources

mount
PID
user
uts
network
IPC
cgroup

System calls used to manipulate namespaces,

clone

unshare

setns

43 / 53

Sandboxing – Linux Namespaces

ls -l /proc/self/ns

total 0

lrwxrwxrwx. 1 root root 0 Nov 6 09:09 cgroup -> ’cgroup:[4026531835]’

lrwxrwxrwx. 1 root root 0 Nov 6 09:09 ipc -> ’ipc:[4026531839]’

lrwxrwxrwx. 1 root root 0 Nov 6 09:09 mnt -> ’mnt:[4026531840]’

lrwxrwxrwx. 1 root root 0 Nov 6 09:09 net -> ’net:[4026531969]’

lrwxrwxrwx. 1 root root 0 Nov 6 09:09 pid -> ’pid:[4026531836]’

lrwxrwxrwx. 1 root root 0 Nov 6 09:09 user -> ’user:[4026531837]’

lrwxrwxrwx. 1 root root 0 Nov 6 09:09 uts -> ’uts:[4026531838]’

44 / 53

Sandboxing – Mount Namespace

Virtualization of a filesystem view

unshare -m /bin/bash

Oldest namespace

clone(2) argument CLONE NEWNS

Mount point propagation,

private
shared
slave
unchanged

45 / 53

Sandboxing – PID Namespace

Virtualization of process identifiers,

CLONE NEWPID

unshare -p --fork --mount-proc /bin/bash

init process in PID namespace

Reaps zombie processes within namespaces

Same signal handling exceptions applies as for real PID 1

When init exits all other processes in a namespace get SIGKILL
from kernel

PID namespace of a process can’t be changed

It is possible to nest PID namespaces

46 / 53

Sandboxing – User Namespace

Virtualization of user and group databases and capabilities

unshare -U --map-root /bin/bash

Mapping of users between a container and a host system (created
by writing to /proc/[pid]/uid, gid map)

User namespaces can be nested

47 / 53

Sandboxing – Network Namespace

unshare -n /bin/bash

Virtualization of network related system resources,

Interfaces
IPv4 stack
IPv6 stack
Routing tables
Ports

veth pair to create tunnel between namespaces

48 / 53

Sandboxing – Other Kernel Namespaces

IPC

Isolation of SystemV IPC resources and POSIX message queues
unshare -i /bin/bash

UTS

Virtualization of hostname and NIS domain name
unshare -u /bin/bash

Cgroup

Virtualization of a cgroup tree view
unshare -C /bin/bash

49 / 53

Sandboxing

systemd provides a lot of options that help you further constrain and
secure services running on your system. In most cases the only thing
you need to do is to enable given feature in a unit file.

PrivateTmp – Service has its own /tmp and /var/tmp

ProtectHome – /home, /root and /run/user will appear empty

ProtectSystem – Directories /usr and /boot are mounted
read-only (if ”full” also /etc is ro, on ”strict” the entire filesystem
is read-only)

ReadOnlyDirectories – Service will have read-only access the
listed directories

InaccessibleDirectories – Listed directories will appear empty
and will have 0000 access mode

RootDirectory – Runs the service in chroot()-ed environment

PrivateDevices – Service gets its own /dev with only basic device
nodes, e.g /dev/null. CAP MKNOD capability is disabled.

50 / 53

Sandboxing

NoNewPrivileges – Ensures that service can never gain new
privileges

SystemCallFilter – You can whitelist or blacklist allowed system
call (note: systemd-analyze syscall-filter

[syscall-group])

PrivateNetwork – Completely isolate service from network access
(network namespace with only loopback)

JoinsNamespaceOf – Enables multiple units to share
PrivateTmp & PrivateNetwork

CapabilityBoundingSet – List of capabilities to be included in
the capability bouding set of the executed process

AmbientCapabilities – List of capabilities to be included in
ambient capability set

TemporaryFileSystem – List of mount points where to mount
tmpfs

51 / 53

Sandboxing

PrivateUsers – Run the service in its own user-namespace
mapping root user to itself and everybody else to the ”nobody”

ProtectKernelTunables – Protect directories containing kernel
runtime variables (e.g. /proc/sys, /sys)

ProtectKernelModules – Disable the ability to load and unload
the kernel modules

ProtectControlGroups – Mount /sys/fs/cgroup read-only

RestrictAddressFamilies – White-list address families (e.g.
AF UNIX) that unit is allowed to use

RestrictNamespaces – Limit access to namespace manipulation
system calls (e.g. unshare, setns)

MemoryDenyWriteExecute – Disable memory mapping that is
simultaneously writable & executable

PrivateMounts – Execute the service in its own mount
namespace and turn off mount propagation towards the host’s
mount namespace

52 / 53

Sandboxing

IPAccounting – Ingress & egress IP traffic is counted for
associated processes

IPAddressAllow – List of allowed IP addresses that service can
communicate with

IPAddressDeny – IP deny list

53 / 53

