Hardware virtualization
On Intel x86 64

Jan Dubsky & Vit Kabele, MFF UK



HyPike

The hypervisor for PikeOS

Software project at MFF UK

Included the development of own kernel
Successfully finished

o Able to run own kernel and PikeOS guests



Presentation roadmap

Top to bottom

We will go from the high-level abstractions
via the required OS interfaces

down to the hardware

Mere Other details in the NSWI150 course (Virtualizace a cloud computing)



Full virtualization Paravirtualization

e Unmodified kernel in userspace The guest is aware of being virtualized.
o binary translation

e Hardware assisted virtualization o Can take the advantage of this

Examples:
e Modified kernels running somehow
e \Virtio
e HyperV



Requirements on the VM

Should behave (almost) as standard process

Can be preempted, resource limits applies properly

Multiple VMs not a problem

What happens in VM should stay in VM (x expensive context switches)
Memory swapping

Live migration

Can be suspended and run again



VM startup/lifecycle

VM START ///_\l-
/Mlt '/?et-rPchl—on

& l
%\HOCO&.C me w ’_F’-epo\;-e bak{€5

$ (AC?“HJe¢ootlﬁ_>
MO\? Weh/\Ol"# \

l v

v
?[&cc UCSLS lie QPU concext

é’{/e,s ko Vhemo"ﬁ»
;—> Pon C,Q
r ig

v oce Hm\oua

k///jp@_ﬁé;



Guest machine boot

e Needs its own bootloader, as usual bootloaders expect BIOS

o And BIOSes do nasty things with computers
o Cache as RAM, RAM initialization etc.
o All of this has to be properly emulated/or patched BIOS (SeaBIOS)

e VM can be also started in an arbitrary state
o Long mode boot - Usually is not supported in vanilla distributions (without patches)

e Let's doacompromise
o Do the work of bootloader and pass the control to the kernel
o For example we use the GNU multiboot2 specification.
m  Which is nice, but neither Linux nor BSDs supports it
m Both Linux and BSD have its own boot protocols



Hypervisor vs. VMM (Virtual Machine Manager)

Hypervisor is the bare metal virtualization
controller
o The kernel or its module

VMM is the process controlling hypervisor

o Userspace program (typically)
o Commanding hypervisor via syscalls
o Emulating features not implemented in the hypervisor

VMM is responsible for what to do, hypervisor
for how to do it
Terminology varies

=y [ )

Q

N\ N\ @g\
'\j A /l N
LKERME(_ W=

|

Hiepwar &




Hypervisor API

e Syscalls (KVM uses ioctls on /dev/kvm)
e VM state is associated with file descriptor
e Examples of calls:

(@)

o O O O

Mapping physical memory
Run core

Injecting interrupts

Handling 1/0O port

Emulate unknown instructions



Intel VMX

The CPU has to be switched to the VMX mode - needs VMXON area
e Each guest is represented by a VMCS - a single page in memory which

stores:
o Guest state
o Host state
o Virtualization control registry

VMCS is read/written using VM* instructions

e VMCS can be active, current and inactive
o Active - CPU can cache parts of the state - the in-memory representation doesn’t have to be
up-to-date.
o  Current - All VM* instruction are related to this VMCS Implies Active.
o Inactive - The in-memory state reflects the real state.



VM Entry

e VMis launched using VMLAUNCH instruction

e VM Entry verifies that both host and guest state are consistent, same as
ensures that MV control registry values are correct

e In case of any errors causes a special VM EXxit, which indicates VM entry fail

e Absence of any detailed reporting what went wrong



VM intercepts

a.k.a. VMEXxit on Intel

Selected instructions cause VMEXits

Different generations of CPUs supports different sets

Root x non-root domain transitions

Host OS is responsible for emulation of the instruction which caused the
VMEXit

e Formal requirements: Popek & Goldberg theorem



VM Exit

Very similar to interrupt handler in a normal kernel

Just one VM Exit handler for all VM Exits

VM Exist are identified using VM Exit numbers

Separate mechanism from interrupt delivery

The handler has to store general purpose registry and then decide based in
the VM Exit number which handler to call.

e Once the VM Exit is handled, the hypervisor returns to VM using VMRESUME
instruction.



EPT

e Another level of page tables for virtualization - below the guests page tables

e Have very similar structure to page tables
o Dirty bits, accessed bits

e Map so called guest-physical addressed to host-physical

e Guest-virtual address translates using guest page tables to guest-physical
address (If guest uses paging). That address in then translated using EPT.

e EPT violation causes a VM exit, which allows the host kernel to emulate

memory mapped accesses.

o But the hypervisor has to decode the causing instruction
o It's fun to write an instruction parser ;)



/O ports

One of the first thing that the kernels try

Legacy (likely?), slow (for sure) way of communication with peripherals
String instructions

Segment hell

Otherwise nice semantics



MSR virtualization

e Hypervisor configures a MSR bitmap
o guest accesses of masked MSRs cause a VM Exit.

e On top of that, VMX allows the hypervisor to configure which registers should
be stored and loaded on VM Exit.

o Possible, but slow!
o VMX won’t store host MSRs on VM Entry - the hypervisor has to do so manually - that sucks
e Some MSRs are are stored directly in VMCS

o Those which are frequently used
o EFER, PAT etc.



Control registry virtualization & CPUID

VMX enforces some control bits to be set - this also applies to guest
The host has a possibility to hide the real CR state from the guest
Some CR bits are not modified by VM EXxit

There is a bug which allows changing a hardcoded bit value

CPUID causes a VM Exit

e Hypervisor emulates its behaviour
o Even for example change of a MSR value

e Used to be used as serializing instruction for RDTSC, which is obviously not a
good idea in virtualized environment



Preemption timer

e The easy way how to exit from VM after some time without involving external
interrupt source.

e The only timer dedicated to virtualization only (and though not shared with the

host OS)

Ticks only in non-root domain

Counts down to zero and then causes VM Exit

The frequency is derived from the host TSC frequency

What happens without invariant TSC?



Interrupt delivery

VMX has very minimalistic interrupt delivery support
The host can inject a single interrupt in every VM Entry
Hypervisor is responsible for ensuring that host state allows interrupt delivery

Hypervisor has to implement interrupt prioritization mechanism
o The table in the manual is definitely not trivial
VMX provides interrupt delivery window and NMI delivery window

functionalities
o Host states that it wants to gain control once an interrupt can be injected to the guest



External interrupt delivery

e Host has to emulate all external interrupt controllers
o No hardware support except for general interrupt support
e Host has to emulate at least PIC and Local APIC
o Local APIC has virtualization support in newest versions, but still requires implementation of
an instruction parser.
e Interrupt delivery logic and prioritization must be implemented properly
o Intel manual is sometimes very underspecified
e CPU support doesn’t care about external devices.

o Must be emulated in the software
o PIC, PIT, UART, RTC, Keyboard...



Questions



Thank you for attention

Jan Dubsky & Vit Kabele, MFF UK



