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Introduction
This specification provides the processor-specific application binary interface document for RISC-V.

This specification consists of the following three parts:

• Calling convention

• ELF specification

• DWARF specification

A future revision of this ABI will include a canonical set of mappings for memory model
synchronization primitives.
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Terms and Abbreviations
This specification uses the following terms and abbreviations:

Term Meaning

ABI Application Binary Interface

gABI Generic System V Application Binary
Interface

ELF Executable and Linking Format

psABI Processor-Specific ABI

DWARF Debugging With Arbitrary Record
Formats

GOT Global Offset Table

PLT Program Linkage Table

PC Program Counter

TLS Thread-Local Storage

NTBS Null-Terminated Byte String

XLEN The width of an integer register in bits

FLEN The width of a floating-point register
in bits

Linker relaxation A mechanism for optimizing programs
at link-time, see Chapter 9 for more
detail.
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Status of ABI
ABI Name Status

ILP32 Ratified

ILP32F Ratified

ILP32D Ratified

ILP32E Draft

LP64 Ratified

LP64F Ratified

LP64D Ratified

LP64Q Ratified


ABI for big-endian is NOT included in this specification, we intend to define that in
future version of this specification.

4



RISC-V Calling Conventions
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Chapter 1. Register Convention

1.1. Integer Register Convention
Table 1. Integer register convention

Name ABI Mnemonic Meaning Preserved across calls?

x0 zero Zero  — (Immutable)

x1 ra Return address No

x2 sp Stack pointer Yes

x3 gp Global pointer  — (Unallocatable)

x4 tp Thread pointer  — (Unallocatable)

x5 - x7 t0 - t2 Temporary registers No

x8 - x9 s0 - s1 Callee-saved registers Yes

x10 - x17 a0 - a7 Argument registers No

x18 - x27 s2 - s11 Callee-saved registers Yes

x28 - x31 t3 - t6 Temporary registers No

In the standard ABI, procedures should not modify the integer registers tp and gp, because signal
handlers may rely upon their values.

The presence of a frame pointer is optional. If a frame pointer exists, it must reside in x8 (s0); the
register remains callee-saved.

1.2. Floating-point Register Convention
Table 2. Floating-point register convention

Name ABI Mnemonic Meaning Preserved across calls?

f0 - f7 ft0 - ft7 Temporary registers No

f8 - f9 fs0 - fs1 Callee-saved registers Yes*

f10 - f17 fa0 - fa7 Argument registers No

f18 - f27 fs2 - fs11 Callee-saved registers Yes*

f28 - f31 ft8 - ft11 Temporary registers No

*: Floating-point values in callee-saved registers are only preserved across calls if they are no larger
than the width of a floating-point register in the targeted ABI. Therefore, these registers can always
be considered temporaries if targeting the base integer calling convention.

The Floating-Point Control and Status Register (fcsr) must have thread storage duration in
accordance with C11 section 7.6 "Floating-point environment <fenv.h>".
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1.3. Vector Register Convention
Table 3. Vector register convention

Name ABI Mnemonic Meaning Preserved across calls?

v0-v31 Temporary registers No

vl Vector length No

vtype Vector data type register No

vxrm Vector fixed-point rounding mode register No

vxsat Vector fixed-point saturation flag register No

Vector registers are not used for passing arguments or return values; we intend to define a new
calling convention variant to allow that as a future software optimization.

The vxrm and vxsat fields of vcsr are not preserved across calls and their values are unspecified
upon entry.

Procedures may assume that vstart is zero upon entry. Procedures may assume that vstart is zero
upon return from a procedure call.


Application software should normally not write vstart explicitly. Any procedure
that does explicitly write vstart to a nonzero value must zero vstart before either
returning or calling another procedure.
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Chapter 2. Procedure Calling Convention
This chapter defines standard calling conventions, and describes how to pass parameters and
return values.

Functions must follow the register convention defined in calling convention: the contents of any
register without specifying it as an argument register in the calling convention are unspecified
upon entry, and the content of any register without specifying it as a return value register or callee-
saved in the calling convention are unspecified upon exit, the contents of all callee-saved registers
must be restored to what was set on entry, and the contents of any fixed registers like gp and tp
never change,


Calling convention for big-endian is NOT included in this specification yet, we
intend to define that in future version of this specification.

2.1. Integer Calling Convention
The base integer calling convention provides eight argument registers, a0-a7, the first two of which
are also used to return values.

Scalars that are at most XLEN bits wide are passed in a single argument register, or on the stack by
value if none is available. When passed in registers or on the stack, integer scalars narrower than
XLEN bits are widened according to the sign of their type up to 32 bits, then sign-extended to XLEN
bits. When passed in registers or on the stack, floating-point types narrower than XLEN bits are
widened to XLEN bits, with the upper bits undefined.

Scalars that are 2×XLEN bits wide are passed in a pair of argument registers, with the low-order
XLEN bits in the lower-numbered register and the high-order XLEN bits in the higher-numbered
register. If no argument registers are available, the scalar is passed on the stack by value. If exactly
one register is available, the low-order XLEN bits are passed in the register and the high-order
XLEN bits are passed on the stack.

Scalars wider than 2×XLEN bits are passed by reference and are replaced in the argument list with
the address.

Aggregates whose total size is no more than XLEN bits are passed in a register, with the fields laid
out as though they were passed in memory. If no register is available, the aggregate is passed on the
stack. Aggregates whose total size is no more than 2×XLEN bits are passed in a pair of registers; if
only one register is available, the first XLEN bits are passed in a register and the remaining bits are
passed on the stack. If no registers are available, the aggregate is passed on the stack. Bits unused
due to padding, and bits past the end of an aggregate whose size in bits is not divisible by XLEN, are
undefined.

Aggregates or scalars passed on the stack are aligned to the greater of the type alignment and XLEN
bits, but never more than the stack alignment.

Aggregates larger than 2×XLEN bits are passed by reference and are replaced in the argument list
with the address, as are C++ aggregates with nontrivial copy constructors, destructors, or vtables.
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Empty structs or union arguments or return values are ignored by C compilers which support them
as a non-standard extension. This is not the case for C++, which requires them to be sized types.

Bitfields are packed in little-endian fashion. A bitfield that would span the alignment boundary of
its integer type is padded to begin at the next alignment boundary. For example, struct { int x :
10; int y : 12; } is a 32-bit type with x in bits 9-0, y in bits 21-10, and bits 31-22 undefined. By
contrast, struct { short x : 10; short y : 12; } is a 32-bit type with x in bits 9-0, y in bits 27-16,
and bits 31-28 and bits 15-10 undefined.

Bitfields may larger than its integer type, bits excess than its integer type will treat as padding bits,
then padding to begin at the next alignment boundary. For example struct { char x : 9; char y; }
is a 24 byte type with x in bits 7-0, y in bit 23-16, and bits 15-8 undefined, struct { char x : 9; char
y : 2 } is a 16-bit type with x in bits 7-0, y in bit 10-9, and bit 8, bits 15-11 is undefined.

Arguments passed by reference may be modified by the callee.

Floating-point reals are passed the same way as aggregates of the same size; complex floating-point
numbers are passed the same way as a struct containing two floating-point reals. (This constraint
changes when the integer calling convention is augmented by the hardware floating-point calling
convention.)

In the base integer calling convention, variadic arguments are passed in the same manner as
named arguments, with one exception. Variadic arguments with 2×XLEN-bit alignment and size at
most 2×XLEN bits are passed in an aligned register pair (i.e., the first register in the pair is even-
numbered), or on the stack by value if none is available. After a variadic argument has been passed
on the stack, all future arguments will also be passed on the stack (i.e. the last argument register
may be left unused due to the aligned register pair rule).

Values are returned in the same manner as a first named argument of the same type would be
passed. If such an argument would have been passed by reference, the caller allocates memory for
the return value, and passes the address as an implicit first parameter.


There is no requirement that the address be returned from the function and so
software should not assume that a0 will hold the address of the return value on
return.

The stack grows downwards (towards lower addresses) and the stack pointer shall be aligned to a
128-bit boundary upon procedure entry. The first argument passed on the stack is located at offset
zero of the stack pointer on function entry; following arguments are stored at correspondingly
higher addresses.

In the standard ABI, the stack pointer must remain aligned throughout procedure execution. Non-
standard ABI code must realign the stack pointer prior to invoking standard ABI procedures. The
operating system must realign the stack pointer prior to invoking a signal handler; hence, POSIX
signal handlers need not realign the stack pointer. In systems that service interrupts using the
interruptee’s stack, the interrupt service routine must realign the stack pointer if linked with any
code that uses a non-standard stack-alignment discipline, but need not realign the stack pointer if
all code adheres to the standard ABI.
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Procedures must not rely upon the persistence of stack-allocated data whose addresses lie below
the stack pointer.

Registers s0-s11 shall be preserved across procedure calls. No floating-point registers, if present, are
preserved across calls. (This property changes when the integer calling convention is augmented by
the hardware floating-point calling convention.)

2.2. Hardware Floating-point Calling Convention
The hardware floating-point calling convention adds eight floating-point argument registers, fa0-
fa7, the first two of which are also used to return values. Values are passed in floating-point
registers whenever possible, whether or not the integer registers have been exhausted.

The remainder of this section applies only to named arguments. Variadic arguments are passed
according to the integer calling convention.

ABI_FLEN refers to the width of a floating-point register in the ABI. The ABI_FLEN must be no wider
than the ISA’s FLEN. The ISA might have wider floating-point registers than the ABI.

For the purposes of this section, "struct" refers to a C struct with its hierarchy flattened, including
any array fields. That is, struct { struct { float f[1]; } g[2]; } and struct { float f; float g; }
are treated the same. Fields containing empty structs or unions are ignored while flattening, even
in C++, unless they have nontrivial copy constructors or destructors. Fields containing zero-length
bit-fields are ignored while flattening. Attributes such as aligned or packed do not interfere with a
struct’s eligibility for being passed in registers according to the rules below, i.e. struct { int i;
double d; } and struct __attribute__((__packed__)) { int i; double d } are treated the same, as
are struct { float f; float g; } and struct { float f; float g __attribute__ ((aligned (8))); }.

A real floating-point argument is passed in a floating-point argument register if it is no more than
ABI_FLEN bits wide and at least one floating-point argument register is available. Otherwise, it is
passed according to the integer calling convention. When a floating-point argument narrower than
FLEN bits is passed in a floating-point register, it is 1-extended (NaN-boxed) to FLEN bits.

A struct containing just one floating-point real is passed as though it were a standalone floating-
point real.

A struct containing two floating-point reals is passed in two floating-point registers, if neither real is
more than ABI_FLEN bits wide and at least two floating-point argument registers are available.
(The registers need not be an aligned pair.) Otherwise, it is passed according to the integer calling
convention.

A complex floating-point number, or a struct containing just one complex floating-point number, is
passed as though it were a struct containing two floating-point reals.

A struct containing one floating-point real and one integer (or bitfield), in either order, is passed in
a floating-point register and an integer register, provided the floating-point real is no more than
ABI_FLEN bits wide and the integer is no more than XLEN bits wide, and at least one floating-point
argument register and at least one integer argument register is available. If the struct is passed in
this manner, and the integer is narrower than XLEN bits, the remaining bits are unspecified. If the
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struct is not passed in this manner, then it is passed according to the integer calling convention.

Unions are never flattened and are always passed according to the integer calling convention.

Values are returned in the same manner as a first named argument of the same type would be
passed.

Floating-point registers fs0-fs11 shall be preserved across procedure calls, provided they hold
values no more than ABI_FLEN bits wide.

2.3. ILP32E Calling Convention


RV32E is not a ratified base ISA and so we cannot guarantee the stability of ILP32E,
in contrast with the rest of this document. This documents the current
implementation in GCC as of the time of writing, but may be subject to change.

The ILP32E calling convention is designed to be usable with the RV32E ISA. This calling convention
is the same as the integer calling convention, except for the following differences. The stack pointer
need only be aligned to a 32-bit boundary. Registers x16-x31 do not participate in the calling
convention, so there are only six argument registers, a0-a5, only two callee-saved registers, s0-s1,
and only three temporaries, t0-t2.

If used with an ISA that has any of the registers x16-x31 and f0-f31, then these registers are
considered temporaries.

The ILP32E calling convention is not compatible with ISAs that have registers that require load and
store alignments of more than 32 bits. In particular, this calling convention must not be used with
the D ISA extension.

2.4. Named ABIs
This specification defines the following named ABIs:

ILP32

Integer calling-convention only, hardware floating-point calling convention is not used (i.e.
ELFCLASS32 and EF_RISCV_FLOAT_ABI_SOFT).

ILP32F

ILP32 with hardware floating-point calling convention for ABI_FLEN=32 (i.e. ELFCLASS32 and
EF_RISCV_FLOAT_ABI_SINGLE).

ILP32D

ILP32 with hardware floating-point calling convention for ABI_FLEN=64 (i.e. ELFCLASS32 and
EF_RISCV_FLOAT_ABI_DOUBLE).

ILP32E

ILP32E calling-convention only, hardware floating-point calling convention is not used (i.e.
ELFCLASS32, EF_RISCV_FLOAT_ABI_SOFT, and EF_RISCV_RVE).
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LP64

Integer calling-convention only, hardware floating-point calling convention is not used (i.e.
ELFCLASS64 and EF_RISCV_FLOAT_ABI_SOFT).

LP64F

LP64 with hardware floating-point calling convention for ABI_FLEN=32 (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_SINGLE).

LP64D

LP64 with hardware floating-point calling convention for ABI_FLEN=64 (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_DOUBLE).

LP64Q

LP64 with hardware floating-point calling convention for ABI_FLEN=128 (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_QUAD).

The ILP32* ABIs are only compatible with RV32* ISAs, and the LP64* ABIs are only compatible with
RV64* ISAs. A future version of this specification may define an ILP32 ABI for the RV64 ISA, but
currently this is not a supported operating mode.

The *F ABIs require the *F ISA extension, the *D ABIs require the *D ISA extension, and the LP64Q
ABI requires the Q ISA extension.


This means code targeting the Zfinx extension always uses the ILP32, ILP32E or
LP64 integer calling-convention only ABIs as there is no dedicated hardware
floating-point register file.

2.5. Default ABIs
While various different ABIs are technically possible, for software compatibility reasons it is
strongly recommended to use the following default ABIs for specific architectures:

on RV32G ILP32D

on RV64G LP64D


Although RV64GQ systems can technically use LP64Q, it is strongly recommended
to use LP64D on general-purpose RV64GQ systems for compatibility with standard
RV64G software.
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Chapter 3. Calling Convention for System
Calls
The calling convention for system calls does not fall within the scope of this document. Please refer
to the documentation of the RISC-V execution environment interface (e.g OS kernel ABI, SBI).
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Chapter 4. C/C++ type details

4.1. C/C++ type sizes and alignments
There are two conventions for C/C++ type sizes and alignments.

ILP32, ILP32F, ILP32D, and ILP32E

Use the following type sizes and alignments (based on the ILP32 convention):

Table 4. C/C++ type sizes and alignments for RV32

Type Size
(Bytes)

Alignment
(Bytes)

bool/_Bool 1 1

char 1 1

short 2 2

int 4 4

long 4 4

long long 8 8

void * 4 4

_Float16 2 2

float 4 4

double 8 8

long double 16 16

float _Complex 8 4

double _Complex 16 8

long double _Complex 32 16

LP64, LP64F, LP64D, and LP64Q

Use the following type sizes and alignments (based on the LP64 convention):

Table 5. C/C++ type sizes and alignments for RV64

Type Size
(Bytes)

Alignment
(Bytes)

bool/_Bool 1 1

char 1 1

short 2 2

int 4 4

long 8 8
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Type Size
(Bytes)

Alignment
(Bytes)

long long 8 8

__int128 16 16

void * 8 8

_Float16 2 2

float 4 4

double 8 8

long double 16 16

float _Complex 8 4

double _Complex 16 8

long double _Complex 32 16

The alignment of max_align_t is 16.

CHAR_BIT is 8.

Structs and unions are aligned to the alignment of their most strictly aligned member. The size of
any object is a multiple of its alignment.

4.2. C/C++ type representations
char is unsigned.

Booleans (bool/_Bool) stored in memory or when being passed as scalar arguments are either 0
(false) or 1 (true).

A null pointer (for all types) has the value zero.

_Float16 is as defined in the C ISO/IEC TS 18661-3 extension.

_Complex types have the same layout as a struct containing two fields of the corresponding real type
(float, double, or long double), with the first member holding the real part and the second member
holding the imaginary part.

4.3. va_list, va_start, and va_arg
The va_list type is void*. A callee with variadic arguments is responsible for copying the contents
of registers used to pass variadic arguments to the vararg save area, which must be contiguous with
arguments passed on the stack. The va_start macro initializes its va_list argument to point to the
start of the vararg save area. The va_arg macro will increment its va_list argument according to the
size of the given type, taking into account the rules about 2×XLEN aligned arguments being passed
in "aligned" register pairs.
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Appendix A: Linux-specific ABI


This section of the RISC-V calling convention specification only applies to Linux-
based systems.

In order to ensure compatibility between different implementations of the C library for Linux, we
provide some extra definitions which only apply on those systems. These are noted in this section.

A.1. Linux-specific C type sizes and alignments
The following definitions apply for all ABIs defined in this document. Here there is no
differentiation between ILP32 and LP64 ABIs.

Table 6. Linux-specific C type sizes and alignments

Type Size (Bytes) Alignment
(Bytes)

wchar_t 4 4

wint_t 4 4

A.2. Linux-specific C type representations
The following definitions apply for all ABIs defined in this document. Here there is no
differentiation between ILP32 and LP64 ABIs.

wchar_t is signed. wint_t is unsigned.
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Chapter 5. Code models
The RISC-V architecture constrains the addressing of positions in the address space. There is no
single instruction that can refer to an arbitrary memory position using a literal as its argument.
Rather, instructions exist that, when combined together, can then be used to refer to a memory
position via its literal. And, when not, other data structures are used to help the code to address the
memory space. The coding conventions governing their use are known as code models.

However, some code models can’t access the whole address space. The linker may raise an error if
it cannot adjust the instructions to access the target address in the current code model.

5.1. Medium low code model
The medium low code model, or medlow, allows the code to address the whole RV32 address space or
the lower 2 GiB and highest 2 GiB of the RV64 address space (0xFFFFFFFF7FFFF800 ~
0xFFFFFFFFFFFFFFFF and 0x0 ~ 0x000000007FFFF7FF). By using the lui and load / store instructions,
when referring to an object, or addi, when calculating an address literal, for example, a 32-bit
address literal can be produced.

The following instructions show how to load a value, store a value, or calculate an address in the
medlow code model.

    # Load value from a symbol
    lui  a0, %hi(symbol)
    lw   a0, %lo(symbol)(a0)

    # Store value to a symbol
    lui  a0, %hi(symbol)
    sw   a1, %lo(symbol)(a0)

    # Calculate address
    lui  a0, %hi(symbol)
    addi a0, a0, %lo(symbol)


The ranges on RV64 are not 0x0 ~ 0x000000007FFFFFFF and 0xFFFFFFFF80000000 ~
0xFFFFFFFFFFFFFFFF due to RISC-V’s sign-extension of immediates; the following
code fragments show where the ranges come from:

# Largest postive number:
lui a0, 0x7ffff # a0 = 0x7ffff000
addi a0, 0x7ff # a0 = a0 + 2047 = 0x000000007FFFF7FF

# Smallest negative number:
lui a0, 0x80000 # a0 = 0xffffffff80000000
addi a0, a0, -0x800 # a0 = a0 + -2048 = 0xFFFFFFFF7FFFF800
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5.2. Medium any code model
The medium any code model, or medany, allows the code to address the range between -2 GiB and +2
GiB from its position. By using auipc and load / store instructions, when referring to an object, or
addi, when calculating an address literal, for example, a signed 32-bit offset, relative to the value of
the pc register, can be produced.

As a special edge-case, undefined weak symbols must still be supported, whose addresses will be 0
and may be out of range depending on the address at which the code is linked. Any references to
possibly-undefined weak symbols should be made indirectly through the GOT as is used for
position-independent code. Not doing so is deprecated and a future version of this specification will
require using the GOT, not just advise.


This is not yet a requirement as existing toolchains predating this part of the
specification do not adhere to this, and without improvements to linker relaxation
support doing so would regress performance and code size.

The following instructions show how to load a value, store a value, or calculate an address in the
medany code model.

         # Load value from a symbol
.Ltmp0:  auipc a0, %pcrel_hi(symbol)
         lw    a0, %pcrel_lo(.Ltmp0)(a0)

         # Store value to a symbol
.Ltmp1:  auipc a0, %pcrel_hi(symbol)
         sw    a1, %pcrel_lo(.Ltmp1)(a0)

         # Calculate address
.Ltmp2:  auipc a0, %pcrel_hi(symbol)
         addi  a0, a0, %pcrel_lo(.Ltmp2)


Although the generated code is technically position independent, it’s not suitable
for ELF shared libraries due to differing symbol interposition rules; for that, please
use the medium position independent code model below.

5.3. Medium position independent code model
This model is similar to the medium any code model, but uses the global offset table (GOT) for non-
local symbol addresses.

         # Load value from a local symbol
.Ltmp0:  auipc a0, %pcrel_hi(symbol)
         lw    a0, %pcrel_lo(.Ltmp0)(a0)

         # Store value to a local symbol
.Ltmp1:  auipc a0, %pcrel_hi(symbol)
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         sw    a1, %pcrel_lo(.Ltmp1)(a0)

         # Calculate address of a local symbol
.Ltmp2:  auipc a0, %pcrel_hi(symbol)
         addi  a0, a0, %pcrel_lo(.Ltmp2)

         # Calculate address of non-local symbol
.Ltmp3:  auipc  a0, %got_pcrel_hi(symbol)
         l[w|d] a0, a0, %pcrel_lo(.Ltmp3)
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Chapter 6. Dynamic Linking
Any functions that use registers in a way that is incompatible with the calling convention of the ABI
in use must be annotated with STO_RISCV_VARIANT_CC, as defined in Section 8.3.



Vector registers have a variable size depending on the hardware implementation
and can be quite large. Saving/restoring all these vector arguments in a run-time
linker’s lazy resolver would use a large amount of stack space and hurt
performance. STO_RISCV_VARIANT_CC attribute will require the run-time linker to
resolve the symbol directly to prevent saving/restoring any vector registers.
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Chapter 7. C++ Name Mangling
C++ name mangling for RISC-V follows the Itanium C++ ABI [itanium-cxx-abi]; there are no RISC-V
specific mangling rules.

See the "Type encodings" section in Itanium C++ ABI for more detail on how to mangle types.
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Chapter 8. ELF Object Files
The ELF object file format for RISC-V follows the Generic System V Application Binary Interface
[gabi] ("gABI"); this specification only describes RISC-V-specific definitions.

8.1. File Header
The section below lists the defined RISC-V-specific values for several ELF header fields; any fields
not listed in this section have no RISC-V-specific values.

e_ident

EI_CLASS

Specifies the base ISA, either RV32 or RV64. Linking RV32 and RV64 code together is not
supported.

ELFCLASS64 ELF-64 Object File

ELFCLASS32 ELF-32 Object File

EI_DATA

Specifies the endianness; either big-endian or little-endian. Linking big-endian and little-
endian code together is not supported.

ELFDATA2LSB Little-endian Object File

ELFDATA2MSB Big-endian Object File

e_machine

Identifies the machine this ELF file targets. Always contains EM_RISCV (243) for RISC-V ELF files.

e_flags

Describes the format of this ELF file. These flags are used by the linker to disallow linking ELF
files with incompatible ABIs together, Table 7 shows the layout of e_flags, and flag details are
listed below.

Table 7. Layout of e_flags

Bit 0 Bits 1 - 2 Bit 3 Bit 4 Bits 5 - 23 Bits 24 - 31

RVC Float ABI RVE TSO Reserved Non-standard extensions

EF_RISCV_RVC (0x0001)

This bit is set when the binary targets the C ABI, which allows instructions to be aligned to 16-
bit boundaries (the base RV32 and RV64 ISAs only allow 32-bit instruction alignment). When
linking objects which specify EF_RISCV_RVC, the linker is permitted to use RVC instructions
such as C.JAL in the linker relaxation process.

EF_RISCV_FLOAT_ABI_SOFT (0x0000)
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EF_RISCV_FLOAT_ABI_SINGLE (0x0002)

EF_RISCV_FLOAT_ABI_DOUBLE (0x0004)

EF_RISCV_FLOAT_ABI_QUAD (0x0006)

These flags identify the floating point ABI in use for this ELF file. They store the largest
floating-point type that ends up in registers as part of the ABI (but do not control if code
generation is allowed to use floating-point internally). The rule is that if you have a floating-
point type in a register, then you also have all smaller floating-point types in registers. For
example _DOUBLE would store "float" and "double" values in F registers, but would not store
"long double" values in F registers. If none of the float ABI flags are set, the object is taken to
use the soft-float ABI.

EF_RISCV_FLOAT_ABI (0x0006)

This macro is used as a mask to test for one of the above floating-point ABIs, e.g., (e_flags &
EF_RISCV_FLOAT_ABI) == EF_RISCV_FLOAT_ABI_DOUBLE.

EF_RISCV_RVE (0x0008)

This bit is set when the binary targets the E ABI.

EF_RISCV_TSO (0x0010)

This bit is set when the binary requires the RVTSO memory consistency model.

Until such a time that the Reserved bits (0x00ffffe0) are allocated by future versions of this
specification, they shall not be set by standard software. Non-standard extensions are free to use
bits 24-31 for any purpose. This may conflict with other non-standard extensions.



There is no provision for compatibility between conflicting uses of the e_flags
bits reserved for non-standard extensions, and many standard RISC-V tools will
ignore them. Do not use them unless you control both the toolchain and the
operating system, and the ABI differences are so significant they cannot be
done with a .RISCV.attributes tag nor an ELF note, such as using a different
syscall ABI.

==== Policy for Merge Objects With Different File Headers

This section describe the behavior when the inputs files come with different file headers.

e_ident and e_machine should have exact same value otherwise linker should raise an error.

e_flags has different different policy for different fields:

RVC

Input file could have different values for the RVC field; the linker should set this field into
EF_RISCV_RVC if any of the input objects has been set.

Float ABI

Linker should report errors if object files of different value for float ABI field.
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RVE

Linker should report errors if object files of different value for RVE field.

TSO

Linker should report errors if object files of different value for TSO field.


The static linker may ignore the compatibility checks if all fields in the e_flags
are zero and all sections in the input file are non-executable sections.

8.2. String Tables
There are no RISC-V specific definitions relating to ELF string tables.

8.3. Symbol Table
st_other

The lower 2 bits are used to specify a symbol’s visibility. The remaining 6 bits have no defined
meaning in the ELF gABI. We use the highest bit to mark functions that do not follow the
standard calling convention for the ABI in use.

The defined processor-specific st_other flags are listed in Table 8.

Table 8. RISC-V-specific st_other flags

Name Mask

STO_RISCV_VARIANT_CC 0x80

See Chapter 6 for the meaning of STO_RISCV_VARIANT_CC.

__global_pointer$ must be exported in the dynamic symbol table of dynamically-linked executables
if there are any GP-relative accesses present in the executable.

8.4. Relocations
RISC-V is a classical RISC architecture that has densely packed non-word sized instruction
immediate values. While the linker can make relocations on arbitrary memory locations, many of
the RISC-V relocations are designed for use with specific instructions or instruction sequences.
RISC-V has several instruction specific encodings for PC-Relative address loading, jumps, branches
and the RVC compressed instruction set.

The purpose of this section is to describe the RISC-V specific instruction sequences with their
associated relocations in addition to the general purpose machine word sized relocations that are
used for symbol addresses in the Global Offset Table or DWARF meta data.

Table 9 provides details of the RISC-V ELF relocations; the meaning of each column is given below:

Enum

The number of the relocation, encoded in the r_info field
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ELF Reloc Type

The name of the relocation, omitting the prefix of R_RISCV_.

Type

Whether the relocation is a static or dynamic relocation:

• A static relocation relocates a location in a relocatable file, processed by a static linker.

• A dynamic relocation relocates a location in an executable or shared object, processed by a
run-time linker.

• Both: Some relocation types are used by both static relocations and dynamic relocations.

Field

Describes the set of bits affected by this relocation; see Section 8.4.2 for the definitions of the
individual types

Calculation

Formula for how to resolve the relocation value; definitions of the symbols can be found in
Section 8.4.1

Description

Additional information about the relocation

Table 9. Relocation types

Enu
m

ELF Reloc Type Type Field / Calculation Description

0 NONE None

1 32 Both word32 32-bit relocation

S + A

2 64 Both word64 64-bit relocation

S + A

3 RELATIVE Dynamic wordclass Adjust a link address (A) to its load
address (B + A)B + A

4 COPY Dynamic Must be in executable; not allowed in
shared library

5 JUMP_SLOT Dynamic wordclass Indicates the symbol associated with
a PLT entryS

6 TLS_DTPMOD32 Dynamic word32

TLSMODULE

7 TLS_DTPMOD64 Dynamic word64

TLSMODULE
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Enu
m

ELF Reloc Type Type Field / Calculation Description

8 TLS_DTPREL32 Dynamic word32

S + A -
TLS_DTV_OFFSET

9 TLS_DTPREL64 Dynamic word64

S + A -
TLS_DTV_OFFSET

10 TLS_TPREL32 Dynamic word32

S + A + TLSOFFSET

11 TLS_TPREL64 Dynamic word64

S + A + TLSOFFSET

16 BRANCH Static B-Type 12-bit PC-relative branch offset

S + A - P

17 JAL Static J-Type 20-bit PC-relative jump offset

S + A - P

18 CALL Static U+I-Type Deprecated, please use CALL_PLT
instead 32-bit PC-relative function
call, macros call, tailS + A - P

19 CALL_PLT Static U+I-Type 32-bit PC-relative function call,
macros call, tail (PIC)S + A - P

20 GOT_HI20 Static U-Type High 20 bits of 32-bit PC-relative GOT
access, %got_pcrel_hi(symbol)G + GOT + A - P

21 TLS_GOT_HI20 Static U-Type High 20 bits of 32-bit PC-relative TLS
IE GOT access, macro la.tls.ie

22 TLS_GD_HI20 Static U-Type High 20 bits of 32-bit PC-relative TLS
GD GOT reference, macro la.tls.gd

23 PCREL_HI20 Static U-Type High 20 bits of 32-bit PC-relative
reference, %pcrel_hi(symbol)S + A - P

24 PCREL_LO12_I Static I-type Low 12 bits of a 32-bit PC-relative,
%pcrel_lo(address of %pcrel_hi), the
addend must be 0S - P

25 PCREL_LO12_S Static S-Type Low 12 bits of a 32-bit PC-relative,
%pcrel_lo(address of %pcrel_hi), the
addend must be 0S - P

26 HI20 Static U-Type High 20 bits of 32-bit absolute
address, %hi(symbol)S + A
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Enu
m

ELF Reloc Type Type Field / Calculation Description

27 LO12_I Static I-Type Low 12 bits of 32-bit absolute address,
%lo(symbol)S + A

28 LO12_S Static S-Type Low 12 bits of 32-bit absolute address,
%lo(symbol)S + A

29 TPREL_HI20 Static U-Type High 20 bits of TLS LE thread pointer
offset, %tprel_hi(symbol)

30 TPREL_LO12_I Static I-Type Low 12 bits of TLS LE thread pointer
offset, %tprel_lo(symbol)

31 TPREL_LO12_S Static S-Type Low 12 bits of TLS LE thread pointer
offset, %tprel_lo(symbol)

32 TPREL_ADD Static TLS LE thread pointer usage,
%tprel_add(symbol)

33 ADD8 Static word8 8-bit label addition

V + S + A

34 ADD16 Static word16 16-bit label addition

V + S + A

35 ADD32 Static word32 32-bit label addition

V + S + A

36 ADD64 Static word64 64-bit label addition

V + S + A

37 SUB8 Static word8 8-bit label subtraction

V - S - A

38 SUB16 Static word16 16-bit label subtraction

V - S - A

39 SUB32 Static word32 32-bit label subtraction

V - S - A

40 SUB64 Static word64 64-bit label subtraction

V - S - A

41-42 Reserved - Reserved for future standard use

43 ALIGN Static Alignment statement. The addend
indicates the number of bytes
occupied by nop instructions at the
relocation offset. The alignment
boundary is specified by the addend
rounded up to the next power of two.
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Enu
m

ELF Reloc Type Type Field / Calculation Description

44 RVC_BRANCH Static CB-Type 8-bit PC-relative branch offset

S + A - P

45 RVC_JUMP Static CJ-Type 11-bit PC-relative jump offset

S + A - P

46 RVC_LUI Static CI-Type High 6 bits of 18-bit absolute address

S + A

47-50 Reserved - Reserved for future standard use

51 RELAX Static Instruction can be relaxed, paired
with a normal relocation at the same
address

52 SUB6 Static word6 Local label subtraction

V - S - A

53 SET6 Static word6 Local label assignment

S + A

54 SET8 Static word8 Local label assignment

S + A

55 SET16 Static word16 Local label assignment

S + A

56 SET32 Static word32 Local label assignment

S + A

57 32_PCREL Static word32 32-bit PC relative

S + A - P

58 IRELATIVE Dynamic wordclass Relocation against a non-preemptible
ifunc symbolifunc_resolver(B +

A)

59-
191

Reserved - Reserved for future standard use

192-
255

Reserved - Reserved for nonstandard ABI
extensions

Nonstandard extensions are free to use relocation numbers 192-255 for any purpose. These
relocations may conflict with other nonstandard extensions.

This section and later ones contain fragments written in assembler. The precise assembler syntax,
including that of the relocations, is described in the RISC-V Assembly Programmer’s Manual [rv-
asm].
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8.4.1. Calculation Symbols

Table 10 provides details on the variables used in relocation calculation:

Table 10. Variables used in relocation calculation

Variable Description

A Addend field in the relocation entry associated with the symbol

B Base address of a shared object loaded into memory

G Offset of the symbol into the GOT (Global Offset Table)

GOT Address of the GOT (Global Offset Table)

P Position of the relocation

S Value of the symbol in the symbol table

V Value at the position of the relocation

GP Value of __global_pointer$ symbol

TLSMODULE TLS module index for the object containing the symbol

TLSOFFSET TLS static block offset (relative to tp) for the object containing the symbol

Global Pointer: It is assumed that program startup code will load the value of the
__global_pointer$ symbol into register gp (aka x3).

8.4.2. Field Symbols

Table 11 provides details on the variables used in relocation fields:

Table 11. Variables used in relocation fields

Variable Description

word6 Specifies the 6 least significant bits of a word8 field

word8 Specifies an 8-bit word

word16 Specifies a 16-bit word

word32 Specifies a 32-bit word

word64 Specifies a 64-bit word

wordclass Specifies a word32 field for ILP32 or a word64 field for LP64

B-Type Specifies a field as the immediate field in a B-type instruction

CB-Type Specifies a field as the immediate field in a CB-type instruction

CI-Type Specifies a field as the immediate field in a CI-type instruction

CJ-Type Specifies a field as the immediate field in a CJ-type instruction

I-Type Specifies a field as the immediate field in an I-type instruction

S-Type Specifies a field as the immediate field in an S-type instruction

U-Type Specifies a field as the immediate field in an U-type instruction
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Variable Description

J-Type Specifies a field as the immediate field in a J-type instruction

U+I-Type Specifies a field as the immediate fields in a U-type and I-type instruction pair

8.4.3. Constants

Table 12 provides details on the constants used in relocation fields:

Table 12. Constants used in
relocation fields

Name Value

TLS_DTV_OFFSET 0x800

8.4.4. Absolute Addresses

32-bit absolute addresses in position dependent code are loaded with a pair of instructions which
have an associated pair of relocations: R_RISCV_HI20 plus R_RISCV_LO12_I or R_RISCV_LO12_S.

The R_RISCV_HI20 refers to an LUI instruction containing the high 20-bits to be relocated to an
absolute symbol address. The LUI instruction is used in conjunction with one or more I-Type
instructions (add immediate or load) with R_RISCV_LO12_I relocations or S-Type instructions (store)
with R_RISCV_LO12_S relocations. The addresses for pair of relocations are calculated like this:

HI20 (symbol_address + 0x800) >> 12

LO12 symbol_address

The following assembly and relocations show loading an absolute address:

    lui  a0, %hi(symbol)     # R_RISCV_HI20 (symbol)
    addi a0, a0, %lo(symbol) # R_RISCV_LO12_I (symbol)

8.4.5. Global Offset Table

For position independent code in dynamically linked objects, each shared object contains a GOT
(Global Offset Table), which contains addresses of global symbols (objects and functions) referred to
by the dynamically linked shared object. The GOT in each shared library is filled in by the dynamic
linker during program loading, or on the first call to extern functions.

To avoid dynamic relocations within the text segment of position independent code the GOT is used
for indirection. Instead of code loading virtual addresses directly, as can be done in static code,
addresses are loaded from the GOT. This allows runtime binding to external objects and functions
at the expense of a slightly higher runtime overhead for access to extern objects and functions.
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8.4.6. Program Linkage Table

The PLT (Program Linkage Table) exists to allow function calls between dynamically linked shared
objects. Each dynamic object has its own GOT (Global Offset Table) and PLT (Program Linkage
Table).

The first entry of a shared object PLT is a special entry that calls _dl_runtime_resolve to resolve the
GOT offset for the called function. The _dl_runtime_resolve function in the dynamic loader resolves
the GOT offsets lazily on the first call to any function, except when LD_BIND_NOW is set in which case
the GOT entries are populated by the dynamic linker before the executable is started. Lazy
resolution of GOT entries is intended to speed up program loading by deferring symbol resolution
to the first time the function is called. The first entry in the PLT occupies two 16 byte entries:

1:  auipc  t2, %pcrel_hi(.got.plt)
    sub    t1, t1, t3               # shifted .got.plt offset + hdr size + 12
    l[w|d] t3, %pcrel_lo(1b)(t2)    # _dl_runtime_resolve
    addi   t1, t1, -(hdr size + 12) # shifted .got.plt offset
    addi   t0, t2, %pcrel_lo(1b)    # &.got.plt
    srli   t1, t1, log2(16/PTRSIZE) # .got.plt offset
    l[w|d] t0, PTRSIZE(t0)          # link map
    jr     t3

Subsequent function entry stubs in the PLT take up 16 bytes and load a function pointer from the
GOT. On the first call to a function, the entry redirects to the first PLT entry which calls
_dl_runtime_resolve and fills in the GOT entry for subsequent calls to the function:

1:  auipc   t3, %pcrel_hi(function@.got.plt)
    l[w|d]  t3, %pcrel_lo(1b)(t3)
    jalr    t1, t3
    nop

8.4.7. Procedure Calls

R_RISCV_CALL and R_RISCV_CALL_PLT relocations are associated with pairs of instructions (AUIPC+JALR)
generated by the CALL or TAIL pseudoinstructions. Originally, these relocations had slightly different
behavior, but that has turned out to be unnecessary, and they are now interchangeable,
R_RISCV_CALL is deprecated, suggest using R_RISCV_CALL_PLT instead.

With linker relaxation enabled, the AUIPC instruction in the AUIPC+JALR pair has both a R_RISCV_CALL
or R_RISCV_CALL_PLT relocation and an R_RISCV_RELAX relocation indicating the instruction sequence
can be relaxed during linking.

Procedure call linker relaxation allows the AUIPC+JALR pair to be relaxed to the JAL instruction when
the procedure or PLT entry is within (-1MiB to +1MiB-2) of the instruction pair.

The pseudoinstruction:
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    call symbol
    call symbol@plt

expands to the following assembly and relocation:

    auipc ra, 0           # R_RISCV_CALL (symbol), R_RISCV_RELAX (symbol)
    jalr  ra, ra, 0

and when symbol has an @plt suffix it expands to:

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX (symbol)
    jalr  ra, ra, 0

8.4.8. PC-Relative Jumps and Branches

Unconditional jump (J-Type) instructions have a R_RISCV_JAL relocation that can represent an even
signed 21-bit offset (-1MiB to +1MiB-2).

Branch (SB-Type) instructions have a R_RISCV_BRANCH relocation that can represent an even signed
13-bit offset (-4096 to +4094).

8.4.9. PC-Relative Symbol Addresses

32-bit PC-relative relocations for symbol addresses on sequences of instructions such as the
AUIPC+ADDI instruction pair expanded from the la pseudoinstruction, in position independent code
typically have an associated pair of relocations: R_RISCV_PCREL_HI20 plus R_RISCV_PCREL_LO12_I or
R_RISCV_PCREL_LO12_S.

The R_RISCV_PCREL_HI20 relocation refers to an AUIPC instruction containing the high 20-bits to be
relocated to a symbol relative to the program counter address of the AUIPC instruction. The AUIPC
instruction is used in conjunction with one or more I-Type instructions (add immediate or load)
with R_RISCV_PCREL_LO12_I relocations or S-Type instructions (store) with R_RISCV_PCREL_LO12_S
relocations.

The R_RISCV_PCREL_LO12_I or R_RISCV_PCREL_LO12_S relocations contain a label pointing to an
instruction in the same section with an R_RISCV_PCREL_HI20 relocation entry that points to the target
symbol:

• At label: R_RISCV_PCREL_HI20 relocation entry → symbol

• R_RISCV_PCREL_LO12_I relocation entry → label

To get the symbol address to perform the calculation to fill the 12-bit immediate on the add, load or
store instruction the linker finds the R_RISCV_PCREL_HI20 relocation entry associated with the AUIPC
instruction. The addresses for pair of relocations are calculated like this:
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HI20 (symbol_address - hi20_reloc_offset + 0x800) >> 12

LO12 symbol_address - hi20_reloc_offset

The successive instruction has a signed 12-bit immediate so the value of the preceding high 20-bit
relocation may have 1 added to it.

Note the compiler emitted instructions for PC-relative symbol addresses are not necessarily
sequential or in pairs. There is a constraint is that the instruction with the R_RISCV_PCREL_LO12_I or
R_RISCV_PCREL_LO12_S relocation label points to a valid HI20 PC-relative relocation pointing to the
symbol.

Here is example assembler showing the relocation types:

label:
    auipc t0, %pcrel_hi(symbol)   # R_RISCV_PCREL_HI20 (symbol)
    lui t1, 1
    lw t2, t0, %pcrel_lo(label)   # R_RISCV_PCREL_LO12_I (label)
    add t2, t2, t1
    sw t2, t0, %pcrel_lo(label)   # R_RISCV_PCREL_LO12_S (label)

8.4.10. Relocation for Alignment

The relocation type R_RISCV_ALIGN marks a location that must be aligned to N-bytes, where N is the
smallest power of two that is greater than the value of the addend field, e.g. R_RISCV_ALIGN with
addend value 2 means align to 4 bytes, R_RISCV_ALIGN with addend value 4 means align to 8 bytes;
this relocation is only required if the containing section has any R_RISCV_RELAX relocations,
R_RISCV_ALIGN points to the beginning of the padding bytes, and the instruction that actually needs
to be aligned is located at the point of R_RISCV_ALIGN plus its addend.

To ensure the linker can always satisfy the required alignment solely by deleting bytes, the
compiler or assembler must emit a R_RISCV_ALIGN relocation and then insert N - [IALIGN] padding
bytes before the location where we need to align, it could be mark by an alignment directive like
.align, .p2align or .balign or emit by compiler directly, the addend value of that relocation is the
number of padding bytes.

The compiler and assembler must ensure padding bytes are valid instructions without any side-
effect like nop or c.nop, and make sure those instructions are aligned to IALIGN if possible.

The linker may remove part of the padding bytes at the linking process to meet the alignment
requirement, and must make sure those padding bytes still are valid instructions and each
instruction is aligned to at least IALIGN byte.

Here is example to showing how R_RISCV_ALIGN is used:

0x0    c.nop           # R_RISCV_ALIGN with addend 2
0x2    add t1, t2, t3  # This instruction must align to 4 byte.

34




R_RISCV_ALIGN relocation is needed because linker relaxation can shrink preceding
code during the linking process, which may cause an aligned location to become
mis-aligned.



IALIGN means the instruction-address alignment constraint. IALIGN is 4 bytes in
the base ISA, but some ISA extensions, including the compressed ISA extension,
relax IALIGN to 2 bytes. IALIGN may not take on any value other than 4 or 2. This
term is also defined in The RISC-V Instruction Set Manual with a similar meaning,
the only difference being it is specified in terms of the number of bits instead of
the number of bytes.

 Here is pseudocode to decide the alignment of R_RISCV_ALIGN relocation:

# input:
#   addend: addend value of relocation with R_RISCV_ALIGN type.
# output:
#   Alignment of this relocation.

def align(addend):
  ALIGN = 1
  while addend >= ALIGN:
    ALIGN *= 2
  return ALIGN

8.5. Thread Local Storage
RISC-V adopts the ELF Thread Local Storage Model in which ELF objects define .tbss and .tdata
sections and PT_TLS program headers that contain the TLS "initialization images" for new threads.
The .tbss and .tdata sections are not referenced directly like regular segments, rather they are
copied or allocated to the thread local storage space of newly created threads. See ELF Handling For
Thread-Local Storage [tls].

In The ELF Thread Local Storage Model, TLS offsets are used instead of pointers. The ELF TLS
sections are initialization images for the thread local variables of each new thread. A TLS offset
defines an offset into the dynamic thread vector which is pointed to by the TCB (Thread Control
Block). RISC-V uses Variant I as described by the ELF TLS specification, with tp containing the
address one past the end of the TCB.

There are various thread local storage models for statically allocated or dynamically allocated
thread local storage. Table 13 lists the thread local storage models:

Table 13. TLS models

Mnemoni
c

Model TLS LE

Local Exec TLS IE Initial Exec
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Mnemoni
c

Model TLS LE

TLS LD Local Dynamic TLS GD

The program linker in the case of static TLS or the dynamic linker in the case of dynamic TLS
allocate TLS offsets for storage of thread local variables.

 Global Dynamic model is also known as General Dynamic model.

8.5.1. Local Exec

Local exec is a form of static thread local storage. This model is used when static linking as the TLS
offsets are resolved during program linking.

Variable attribute

__thread int i __attribute__((tls_model("local-exec")));

Example assembler load and store of a thread local variable i using the %tprel_hi, %tprel_add and
%tprel_lo assembler functions. The emitted relocations are in comments.

    lui  a5,%tprel_hi(i)           # R_RISCV_TPREL_HI20 (symbol)
    add  a5,a5,tp,%tprel_add(i)    # R_RISCV_TPREL_ADD (symbol)
    lw   t0,%tprel_lo(i)(a5)       # R_RISCV_TPREL_LO12_I (symbol)
    addi t0,t0,1
    sw   t0,%tprel_lo(i)(a5)       # R_RISCV_TPREL_LO12_S (symbol)

The %tprel_add assembler function does not return a value and is used purely to associate the
R_RISCV_TPREL_ADD relocation with the add instruction.

8.5.2. Initial Exec

Initial exec is is a form of static thread local storage that can be used in shared libraries that use
thread local storage. TLS relocations are performed at load time. dlopen calls to libraries that use
thread local storage may fail when using the initial exec thread local storage model as TLS offsets
must all be resolved at load time. This model uses the GOT to resolve TLS offsets.

Variable attribute

__thread int i __attribute__((tls_model("initial-exec")));

ELF flags

DF_STATIC_TLS

Example assembler load and store of a thread local variable i using the la.tls.ie
pseudoinstruction, with the emitted TLS relocations in comments:

    la.tls.ie a5,i
    add  a5,a5,tp
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    lw   t0,0(a5)
    addi t0,t0,1
    sw   t0,0(a5)

The assembler pseudoinstruction:

    la.tls.ie a5,symbol

expands to the following assembly instructions and relocations:

label:
    auipc a5, 0                   # R_RISCV_TLS_GOT_HI20 (symbol)
    {ld,lw} a5, 0(a5)             # R_RISCV_PCREL_LO12_I (label)

8.5.3. Global Dynamic

RISC-V local dynamic and global dynamic TLS models generate equivalent object code. The Global
dynamic thread local storage model is used for PIC Shared libraries and handles the case where
more than one library uses thread local variables, and additionally allows libraries to be loaded
and unloaded at runtime using dlopen. In the global dynamic model, application code calls the
dynamic linker function __tls_get_addr to locate TLS offsets into the dynamic thread vector at
runtime.

Variable attribute

__thread int i __attribute__((tls_model("global-dynamic")));

Example assembler load and store of a thread local variable i using the la.tls.gd
pseudoinstruction, with the emitted TLS relocations in comments:

    la.tls.gd a0,i
    call  __tls_get_addr@plt
    mv   a5,a0
    lw   t0,0(a5)
    addi t0,t0,1
    sw   t0,0(a5)

The assembler pseudoinstruction:

    la.tls.gd a0,symbol

expands to the following assembly instructions and relocations:

label:
    auipc a0,0                    # R_RISCV_TLS_GD_HI20 (symbol)
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    addi  a0,a0,0                 # R_RISCV_PCREL_LO12_I (label)

In the Global Dynamic model, the runtime library provides the __tls_get_addr function:

extern void *__tls_get_addr (tls_index *ti);

where the type tls_index is defined as:

typedef struct
{
  unsigned long int ti_module;
  unsigned long int ti_offset;
} tls_index;

8.6. Sections

8.6.1. Section Types

The defined processor-specific section types are listed in Table 14.

Table 14. RISC-V-specific section types

Name Value Attribute
s

SHT_RISCV_ATTRIBUTES 0x70000003 none

8.6.2. Special Sections

Table 15 lists the special sections defined by this ABI.

Table 15. RISC-V-specific sections

Name Type Attribute
s

.riscv.attributes SHT_RISCV_ATTRIBUTES none

.riscv.attributes names a section that contains RISC-V ELF attributes.

8.7. Program Header Table
The defined processor-specific segment types are listed in Table 16.

Table 16. RISC-V-specific segment types

Name Value Meaning

PT_RISCV_ATTRIBUTES 0x70000003 RISC-V ELF attribute section.
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PT_RISCV_ATTRIBUTES describes the location of RISC-V ELF attribute section.

8.8. Note Sections
There are no RISC-V specific definitions relating to ELF note sections.

8.9. Dynamic Section
The defined processor-specific dynamic array tags are listed in Table 17.

Table 17. RISC-V-specific dynamic array tags

Name Value d_un Executable Shared Object

DT_RISCV_VARIANT_CC 0x70000001 d_val Platform specific Platform specific

An object must have the dynamic tag DT_RISCV_VARIANT_CC if it has one or more R_RISCV_JUMP_SLOT
relocations against symbols with the STO_RISCV_VARIANT_CC attribute.

DT_INIT and DT_FINI are not required to be supported and should be avoided in favour of
DT_PREINIT_ARRAY, DT_INIT_ARRAY and DT_FINI_ARRAY.

8.10. Hash Table
There are no RISC-V specific definitions relating to ELF hash tables.

8.11. Attributes
Attributes are used to record information about an object file/binary that a linker or runtime loader
needs to check compatibility.

Attributes are encoded in a vendor-specific section of type SHT_RISCV_ATTRIBUTES and name
.riscv.attributes. The value of an attribute can hold an integer encoded in the uleb128 format or a
null-terminated byte string (NTBS).

RISC-V attributes have a string value if the tag number is odd and an integer value if the tag
number is even.

8.11.1. List of attributes

Table 18. RISC-V attributes

Tag Value Parameter
type

Description

Tag_RISCV_stack_align 4 uleb128 Indicates the stack alignment
requirement in bytes.

Tag_RISCV_arch 5 NTBS Indicates the target architecture of
this object.
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Tag Value Parameter
type

Description

Tag_RISCV_unaligned_access 6 uleb128 Indicates whether to impose
unaligned memory accesses in code
generation.

Tag_RISCV_priv_spec 8 uleb128 Deprecated, indicates the major
version of the privileged
specification.

Tag_RISCV_priv_spec_minor 10 uleb128 Deprecated, indicates the minor
version of the privileged
specification.

Tag_RISCV_priv_spec_revisio
n

12 uleb128 Deprecated, indicates the revision
version of the privileged
specification.

Reserved for non-standard
attribute

>= 32768 - -

8.11.2. Detailed attribute description

How does this specification describe public attributes?

Each attribute is described in the following structure: <Tag name>, <Value>, <Parameter type
1>=<Parameter name 1>[, <Parameter type 2>=<Parameter name 2>]

Tag_RISCV_stack_align, 4, uleb128=value

Tag_RISCV_stack_align records the N-byte stack alignment for this object. The default value is 16 for
RV32I or RV64I, and 4 for RV32E.

Merge Policy

The linker should report erros if link object files with different Tag_RISCV_stack_align values.

Tag_RISCV_arch, 5, NTBS=subarch

Tag_RISCV_arch contains a string for the target architecture taken from the option -march. Different
architectures will be integrated into a superset when object files are merged.

Tag_RISCV_arch should be recorded in lowercase, and all extensions should be separated by
underline(_).

Note that the version information for target architecture must be presented explicitly in the
attribute and abbreviations must be expanded. The version information, if not given by -march,
must agree with the default specified by the tool. For example, the architecture rv32i has to be
recorded in the attribute as rv32i2p1 in which 2p1 stands for the default version of its based ISA. On
the other hand, the architecture rv32g has to be presented as
rv32i2p1_m2p0_a2p1_f2p2_d2p2_zicsr2p0_zifencei2p0 in which the abbreviation g is expanded to the
imafd_zicsr_zifencei combination with default versions of the standard extensions.
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The toolchain should normalized the architecture string into canonical order whcih defined in The
RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document [riscv-unpriv] , expanded with
all required extension and should add shorthand extension into architecture string if all expanded
extensions are included in architecture string.



A shorthand extension is an extension that does not define any actual instructions,
registers or behavior, but requires other extensions, such as the zks extension,
which is defined in the cryptographic extension, zks extension is shorthand for
zbkb, zbkc, zbkx, zksed and zksh, so the toolchain should normalize
rv32i_zbkb_zbkc_zbkx_zksed_zksh to rv32i_zbkb_zbkc_zbkx_zks_zksed_zksh; g is an
exception and does not apply to this rule.

Merge Policy

The linker should merge the different architectures into a superset when object files are merged,
and should report errors if the merge result contains conflict extensions.

This specification does not mandate rules on how to merge ISA strings that refer to different
versions of the same ISA extension. The suggested merge rules are as follows:

• Merge versions into the latest version of all input versions that are ratified without warning
or error.

• The linker should emit a warning or error if input versions have different versions and any
extension versions are not ratified.

• The linker may report a warning or error if it detects incompatible versions, even if it’s
ratified.


Example of conflicting merge result: RV32IF and RV32IZfinx will be merged into
RV32IFZfinx, which is an invalid architecture since F and Zfinx conflict.

Tag_RISCV_unaligned_access, 6, uleb128=value

Tag_RISCV_unaligned_access denotes the code generation policy for this object file. Its values are
defined as follows:

0 This object does not perform any unaligned memory accesses.

1 This object may perform unaligned memory accesses.

Merge policy

Input file could have different values for the Tag_RISCV_unaligned_access; the linker should set
this field into 1 if any of the input objects has been set.

Tag_RISCV_priv_spec, 8, uleb128=version

Tag_RISCV_priv_spec_minor, 10, uleb128=version
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Tag_RISCV_priv_spec_revision, 12, uleb128=version


Those three attributes are deprecated since RISC-V using extensions with version
rather than a single privileged specification version scheme for privileged ISA.

Tag_RISCV_priv_spec contains the major/minor/revision version information of the privileged
specification.

Merge policy

The linker should report errors if object files of different privileged specification versions are
merged.
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Chapter 9. Linker Relaxation
At link time, when all the memory objects have been resolved, the code sequence used to refer to
them may be simplified and optimized by the linker by relaxing some assumptions about the
memory layout made at compile time.

Some relocation types, in certain situations, indicate to the linker where this can happen.
Additionally, some relocation types indicate to the linker the associated parts of a code sequence
that can be thusly simplified, rather than to instruct the linker how to apply a relocation.

The linker should only perform such relaxations when a R_RISCV_RELAX relocation is at the same
position as a candidate relocation.

As this transformation may delete bytes (and thus invalidate references that are commonly
resolved at compile-time, such as intra-function jumps), code generators must in general ensure
that relocations are always emitted when relaxation is enabled.

9.1. Linker Relaxation Types
The purpose of this section is to describe all types of linker relaxation, the linker may implement a
part of linker relaxation type, and can be skipped the relaxation type is unsupported.

Each candidate relocation might fit more than one relaxation type, the linker should only apply one
relaxation type.

In the linker relaxation optimization, we introduce a concept called relocation group; a relocation
group consists of 1) relocations associated with the same target symbol and can be applied with the
same relaxation, or 2) relocations with the linkage relationship (e.g. R_RISCV_PCREL_LO12_S linked
with a R_RISCV_PCREL_HI20); all relocations in a single group must be present in the same section,
otherwise will split into another relocation group.

Every relocation group must apply the same relaxation type, and the linker should not apply linker
relaxation to only part of the relocation group.



Applying relaxation on the part of the relocation group might result in a wrong
execution result; for example, a relocation group consists of lui t0, 0 #
R_RISCV_HI20 (foo), lw t1, 0(t0) # R_RISCV_LO12_I (foo), and we only apply global
pointer relaxation on first instruction, then remove that instruction, and didn’t
apply relaxation on the second instruction, which made the load instruction
reference to an unspecified address.

9.1.1. Function Call Relaxation

Target Relocation

R_RISCV_CALL, R_RISCV_CALL_PLT.

Description

This relaxation type can relax AUIPC+JALR into JAL.
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Condition

The offset between the location of relocation and target symbol or the PLT stub of the target
symbol is within +-1MiB.

Relaxation

• Instruction sequence associated with R_RISCV_CALL or R_RISCV_CALL_PLT can be rewritten to
a single JAL instruction with the offset between the location of relocation and target
symbol.

Example

Relaxation candidate:

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX
    jalr  ra, ra, 0

Relaxation result:

    jal  ra, 0            # R_RISCV_JAL (symbol)


Using address of PLT stubs of the target symbol or address target symbol directly
will resolve by linker according to the visibility of the target symbol.

9.1.2. Compressed Function Call Relaxation

Target Relocation

R_RISCV_CALL, R_RISCV_CALL_PLT.

Description

This relaxation type can relax AUIPC+JALR into C.JAL instruction sequence.

Condition

The offset between the location of relocation and target symbol or the PLT stub of the target
symbol is within +-2KiB and rd operand of second instruction in the instruction sequence is
X1/RA and if it is RV32.

Relaxation

• Instruction sequence associated with R_RISCV_CALL or R_RISCV_CALL_PLT can be rewritten to
a single C.JAL instruction with the offset between the location of relocation and target
symbol.

Example

Relaxation candidate:

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX
    jalr  ra, ra, 0
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Relaxation result:

    c.jal  ra, <offset-between-pc-and-symbol>

9.1.3. Compressed Tail Call Relaxation

Target Relocation

R_RISCV_CALL, R_RISCV_CALL_PLT.

Description

This relaxation type can relax AUIPC+JALR into C.J instruction sequence.

Condition

The offset between the location of relocation and target symbol or the PLT stub of the target
symbol is within +-2KiB and rd operand of second instruction in the instruction sequence is
X0.

Relaxation

• Instruction sequence associated with R_RISCV_CALL or R_RISCV_CALL_PLT can be rewritten to
a single C.J instruction with the offset between the location of relocation and target
symbol.

Example

Relaxation candidate:

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX
    jalr  x0, ra, 0

Relaxation result:

    c.j  ra, <offset-between-pc-and-symbol>

9.1.4. Global-pointer Relaxation

Target Relocation

R_RISCV_HI20, R_RISCV_LO12_I, R_RISCV_LO12_S, R_RISCV_PCREL_HI20,
R_RISCV_PCREL_LO12_I, R_RISCV_PCREL_LO12_S

Description

This relaxation type can relax a sequence of the load address of a symbol or load/store with a
symbol reference into global-pointer-relative instruction.

Condition

Offset between global-pointer and symbol is within +-2KiB, R_RISCV_PCREL_LO12_I and
R_RISCV_PCREL_LO12_S resolved as indirect relocation pointer. It will always point to another
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R_RISCV_PCREL_HI20 relocation, the symbol pointed by R_RISCV_PCREL_HI20 will be used in the
offset calculation.

Relaxation

• Instruction associated with R_RISCV_HI20 or R_RISCV_PCREL_HI20 can be removed.

• Instruction associated with R_RISCV_LO12_I, R_RISCV_LO12_S, R_RISCV_PCREL_LO12_I or
R_RISCV_PCREL_LO12_S can be replaced with a global-pointer-relative access instruction.

Example

Relaxation candidate:

    lui t0, 0       # R_RISCV_HI20 (symbol), R_RISCV_RELAX
    lw t1, 0(t0)    # R_RISCV_LO12_I (symbol), R_RISCV_RELAX

Relaxation result:

    lw t1, <gp-offset-for-symbol>(gp)


The global-pointer refers to the address of the __global_pointer$ symbol, which is
the content of gp register.



This relaxation requires the program to initialize the gp register with the address
of __global_pointer$ symbol before accessing any symbol address, strongly
recommended initialize gp at the beginning of the program entry function like
_start, and code fragments of initialization must disable linker relaxation to
prevent initialization instruction relaxed into a NOP-like instruction (e.g. mv gp,
gp).

    # Recommended way to initialize the gp register.
    .option push
    .option norelax
1:  auipc gp, %pcrel_hi(__global_pointer$)
    addi  gp, gp, %pcrel_lo(1b)
    .option pop



The global pointer is referred to as the global offset table pointer in many other
targets, however, RISC-V uses PC-relative addressing rather than access GOT via
the global pointer register (gp), so we use gp register to optimize code size and
performance of the symbol accessing.

9.1.5. Zero-page Relaxation

Target Relocation

R_RISCV_HI20, R_RISCV_LO12_I, R_RISCV_LO12_S
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Description

This relaxation type can relax a sequence of the load address of a symbol or load/store with a
symbol reference into shorter instruction sequence if possible.

Condition

The symbol address located within 0x0 ~ 0x7ff or 0xfffffffffffff800 ~ 0xffffffffffffffff for
RV64 and 0xfffff800 ~ 0xffffffff for RV32.

Relaxation

• Instruction associated with R_RISCV_HI20 can be removed if the symbol address satisfies the
x0-relative access.

• Instruction associated with R_RISCV_LO12_I or R_RISCV_LO12_S can be relaxed into x0-relative
access.

Example

Relaxation candidate:

    lui t0, 0       # R_RISCV_HI20 (symbol), R_RISCV_RELAX
    lw t1, 0(t0)    # R_RISCV_LO12_I (symbol), R_RISCV_RELAX

Relaxation result:

    lw t1, <address-of-symbol>(x0)

9.1.6. Compressed LUI Relaxation

Target Relocation

R_RISCV_HI20, R_RISCV_LO12_I, R_RISCV_LO12_S

Description

This relaxation type can relax a sequence of the load address of a symbol or load/store with a
symbol reference into shorter instruction sequence if possible.

Condition

The symbol address can be presented by a C.LUI plus an ADDI or load / store instruction.

Relaxation

• Instruction associated with R_RISCV_HI20 can be replaced with C.LUI.

• Instruction associated with R_RISCV_LO12_I or R_RISCV_LO12_S should keep unchanged.

Example

Relaxation candidate:

    lui t0, 0       # R_RISCV_HI20 (symbol), R_RISCV_RELAX
    lw t1, 0(t0)    # R_RISCV_LO12_I (symbol), R_RISCV_RELAX
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Relaxation result:

    c.lui t0, <non-zero>  # RVC_LUI (symbol), R_RISCV_RELAX
    lw t1, 0(t0)          # R_RISCV_LO12_I (symbol), R_RISCV_RELAX

9.1.7. Thread-pointer Relaxation

Target Relocation

R_RISCV_TPREL_HI20, R_RISCV_TPREL_ADD, R_RISCV_TPREL_LO12_I, R_RISCV_TPREL_LO12_S.

Description

This relaxation type can relax a sequence of the load address of a symbol or load/store with a
thread-local symbol reference into a thread-pointer-relative instruction.

Condition

Offset between thread-pointer and thread-local symbol is within +-2KiB.

Relaxation

• Instruction associated with R_RISCV_TPREL_HI20 or R_RISCV_TPREL_ADD can be removed.

• Instruction associated with R_RISCV_TPREL_LO12_I or R_RISCV_TPREL_LO12_S can be replaced
with a thread-pointer-relative access instruction.

Example

Relaxation candidate:

    lui t0, 0       # R_RISCV_TPREL_HI20 (symbol), R_RISCV_RELAX
    add t0, t0, tp  # R_RISCV_TPREL_ADD (symbol), R_RISCV_RELAX
    lw t1, 0(t0)    # R_RISCV_TPREL_LO12_I (symbol), R_RISCV_RELAX

Relaxation result:

    lw t1, <tp-offset-for-symbol>(tp)
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RISC-V DWARF Specification
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Chapter 10. DWARF Debugging Format
The DWARF debugging format for RISC-V follows the standard DWARF specification; this
specification only describes RISC-V-specific definitions.
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Chapter 11. DWARF Register Numbers
The table below lists the mapping from DWARF register numbers to machine registers.

Table 19. DWARF register number encodings

DWARF Number Register Name Description

0 - 31 x0 - x31 Integer Registers

32 - 63 f0 - f31 Floating-point Registers

64 Alternate Frame Return Column

65 - 95 Reserved for future standard
extensions

96 - 127 v0 - v31 Vector Registers

128 - 3071 Reserved for future standard
extensions

3072 - 4095 Reserved for custom extensions

4096 - 8191 CSRs

The alternate frame return column is meant to be used when unwinding from signal handlers, and
stores the address where the signal handler will return to.

The RISC-V specification defines a total of 4096 CSRs (see [riscv-priv]). Each CSR is assigned a
DWARF register number corresponding to its specified CSR number plus 4096.
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