/) J’WD W”’“ v gt 1HO
W. Doboscvrion. : Con ffecerse Variolior ?/ Sechtle Sond
(nfforprrateor /wcmo,g Kellosy 71 (1950), 56)

/wmx% m»y ’a/jo'ulvrw

ftotelichon oCoidorts pyppika. — 4y sloted pesi’ g eiddasin. otots o
o) et — [/57&36; : @47%,/9 L,
(ﬂﬂ/Mﬁ Ve, Kitlerno 79(2004), 205 £2%)
ot ootbaol colborani et po 2 (25) e A e
//M AL J Bl S, b Loy Sririatns)
/an'm; olodle /J/m/w o Mtopick s Piblliondsry, , M&um;/;,)
Hltoodern o W

/A(/%(, e ma.éooén(//mdo;r/m(c ,l,(al/d(z W (/%ztéa»a e’ 1 Lo /szt/m
Ao’xddww
ﬂ(a’é Jrlosfmle’ m= W, 850 e, Soo, 1000, Looo, 10200

oo . il @ ndioihnctact,
/CC& 4/7 %ﬂ/@//&é V4 ;W (22 W@m €&C¢?¢{€@ ?of’
/70-&/@(/»“ ,a/wﬂéi vz /W%) : /’7/4?%%‘1«0/ ;&;L’:zm—ucf
phlipse’ ed Mooief fubbond & Hettood a er 0 nta
/70’77/’&,?52/ e W

Obzrc zywwmldﬂ” Grrlyua. W?/A/mw;m 1 lreierr /zm

) L e gt Cas | mikate fmliede caiahtniley dictene

A) 4?/@ Lbornerdar K /wéym o Mabeloe, /3”“ //“VWML
-~ = / Z

¢) gf//¢ La Wu(my,-o ARl mj,»m / dyesting,
ratirsre | metiar mdmmw%,__,)

A) \/7@ f?&“’ wrrta i prirkhe jrambiar) o, Gzl
Procrratonic Aoyl focibaiil)

/) dfl MW 7444,&«/ 7yl fie //m/, 24 0rrias,
/ /(ydjy’% W /()k» /'4»544 /?Wdﬂ?'rrrwé. Ha
/000/M&L/ gl 2000 4 7470 %mzo,w

j) O%M /AWWW/) prictre é/“‘?/ %2 /’U«/mv(é(

mmw;oy'oo Gooct P oy Gl miy pibeiiri
A x /7046;/«'% Shetlood, Wij /47/)7@%&
40/” Goboe otiidort (Miset @ R
Somolante] *
f et li M /Lu(a&w : PW' /Jmhmo et aﬁauénw
W/wyw/d et pta Kl WW

P M M_, - A &}’)’u/lrfv oler O-ap W a. /Aym;"p};’&

/

g 2 e

Volume 11, number 1

AN EFFICIENT VARIATION OF BUBBLE SORT

Wiodzimierz DOBOSIEWICZ

INFORMATION PROCESSING LETTERS

29 August 1980

Institute of Informatics, Warsaw University, 00-901 Warszawa, Poland

Received 15 May 1980

Algorithms, sorting

Bubble sort is well known for being one of the
worst sorting algorithms. One way to improve its effi-
ciency was described by Batcher [1], however it is so
complex and the amount of bookkeeping so huge that
this algorithm is not commonly used in single-proces-
sor programming.

Bubble sort can be improved in yet another way,
which is similar to Shell’s version of the insertion sort.
We select a sequence hy, ..., hy, where h,>1and

t = O(log n), n being the number of sorted elements.

In pass i (i <t) the vector to be sorted is traversed
from left to right and items distant h; from each other
are compared and exchanged if necessary. After t
passes a regular bubble sort should be used to com-

plete the sorting process. This gives the following algo-

rithm:
fork :=1totdo
begin

inc :=hg;

fori:=1ton —incdo
if A[i] > Ali+inc]
then A[i] < Ali +inc] fi
end;
g:=n-—-1;
while 2 >0 do
begin
k:=0;
fori:=1tog do
if A[i] > Ali+ 1]
then {A[i] < Ali+ 1]k =il
Qi =k-1
end;

Obviously, this algorithm works, as the second part
of it is just the well-known bubble sort. Its average
efficiency is quite good, as illustrated by the Table 1.

The above results were obtained by sorting real
numbers generated by a uniform distribution random
numbers generator. The tested programs were written
in Fortran and run on a CDC Cyber 72. The sequence
h,=|3n],hin = | 3h;] was used. The code of
Quicksort was copied from [2], while Shellsort was
coded after the description given in [3] with incre-
ments of form 2% — 1. While the version of Quicksort
is approximately the best achievable, there is no cer-
tainty whether this is true in the case of Shellsort —
this algorithm depends on the choice of increments
(see [3] for details).

The exact time complexity of the presented algo-
rithm has yet to be determined. The author hopes that
this short presentation will encourage some one to
work on this problem.

Table 1
Running times of various sorting algorithms (times in ms)
n Quicksort Shellsort Bubblesort Modified
Bubblesort
10 0.86 0.99 0.6 0.58
50 5.84 8.62 14.6 4.62
100 13.38 21.28 57.3 11.87
500 87.81 153.70 1456.6 84.80
1000 199.8 367.0 194.9
2000 441.2 858.2 450.5
10000 2696.8 2743.8

»@) (hbtnye o W 4L Ve @

ma. W %/m‘m o/ﬂ? ﬁz dhe wpictot ,umw; @w%ﬂm
/(myuwz, Jeesrnat 35(7991), #¢- g/)

F b e tirirdasn phict tomay jh alionidmi (Hotsis, Hebterots.
/Crucééwfw a %Wf— V&z&u) P (6 rrnce 0%4' o
MWW W/ 22 penr)ah,.ou oolavaroe loxilonds s

ﬁc‘/& %th s owerlacru / /M/m—vfmo,%/ /%af&: Caod o@a/waayw o
Olbncterdtrum a Y Lirrialieornry sr Guttobiondess,
AOr e) /,(/Mana,, /ZVW}LK/)’MM’-/ et Yopbtnosd.
Do) g Sbecric g Julgpolsaite. ne, 4 o i
f;a« wnelery Slpsarime Sorbiche 7;4%9 @ ploxiiphe = 74}_%&2
/;jo(cﬁmcé sty Hawoliy,
linctis, . Pute O(n) ot sipans /) s
o I SO ety
Mzuaa/ Aredd, ﬁ/”? 7//%%2/1%%
%W @(m 9/3) ”y‘?&w;’/uy;%
WMV : Mﬂldz, foncd g greas (éj/m 7,25)4 &/m /'29
rubo 6’/”7 /;72”;) W;my’/fy;m

%1%:/%()770;11&4«6 e et fans Ozaaee s MW) a /oa'ié 7/;;:4;9
prls (o dig ometyiy)

- W r //oc;C WM;" , é’o’c’/e /mwlmz % 6,'2 ﬁ&é/yj;;iﬂyqy

/114’? ne .m%po%e/ fPhrcclace afa'/j 700 @i 1E oo Wo/lx*ﬁao.

&
/)JZL /W},L 2 02/ ma;’w? va’uaj/m PN DO M (LAND ne prosmatact)
fwé /m&ﬂmj M/mm SUN 3 nvadolation 7. J’/‘f@/;w«,&'
a VAX ¥¢5 o 748 Mb.
Heselilioer / ' :
/‘"1 /MMM aﬁ%dc 70 000, /(M%C/(Mmﬁ/ Ao A OO 000
ﬂ/wj fuo et).
£ romiren o, s /M Sy Pnllectetsd ootees
9&0%’)&47(,: m:a) /Ze;mﬂl a/jw‘u/&zg m/ow/ﬂywrmdd 0%;(/ a@&’/g
/4) Mlene /7M Aenlee /4«;&0 74%1;7) o ravweoborle ma
W% e prebbioke samibore
& (m ZZG) a 67/47@2/»)
@ /}Wa/,ﬂéyu/pe 00l MW//):'M/ Lecrllarree A&zo/ao
é(mfﬁ') /{M Hbbwotir a Sonikbiiy Heltoony
6 (m) po Fetperseatiio
(Z&/,,’ j}aﬂo&' lowarss @ Hovmsmni /)37@0&0«/ Alakikechow

Jootaspmnte iy O Loy o) ru (loidont o mphecinn pugianis”
pist O(n*) Acrfosriss, n mibesvmms oloiderd tiste O(om)

- wm‘“‘\
J Jﬁﬂﬂ(ﬁ/’/ Vi Je’&{ffﬁ&fc‘é / ?/ac//’('a/ vGri G 82 S &/ Shattcor -
/Zﬁérﬂ//oﬂ ?fa’esr:'rg /(/‘;‘fr_g 26//3!;/J¢j/ 37-43
s’ J’A’”/":/

Daéay sl b6 @ yar/ Foory (g,y)/n)wm/é

. !
zobecrrets?

2
Mg,j: : 2@207 Loe J/y:f/(a/a’n

Table 1. Running times (in seconds) of various sorting algorithms

Shellsort Quicksort
N Shell’s Hibbard's Knuth's Sedgewick's Heapsort Standard Optimiscd®
100 0.0024 0.0022 0.0021 0.0017 0.0042 0.0028 0.0024
1000 0.0354 0.0344 0.0306 0.0293 0.0557 0.0315 0.0259
10000 0.5890 0.5563 0.5000 0.4300 0.7165 0.3677 0.3153
100000 9.230 8.408 8.041 5.730 8.859 4.230 3.588
1000000 141.6 130.3 135.4 71.2 104.7 47.1 41.3

* Recursive with median-of-three partitiomng and a cutoff of 10.

Table 2 b ref
N Observed exchanges OQur fit O(N'*%) fit O(Nlog? N) it
100 3476 360.2 400.7 —2459
500 2950.0 2944.1 30444 291.1
1000 7200.8 7139.0 7291.0 2514.6
5000 55831.4 55871.1 55397.2 422327
10000 134658.1 134966.1 132673.9 116237.5
50000 1038169.2 1038814.1 1008062.8 1022314.1
100000 2500788.7 2497784.2 24142674 2486839.0
500000 19120679.6 19113501.4 18343726.9 18290748.7
1000000 45848881.9 45873300.0 439324446 42248509.9
12000000 1058423789.1 1052351112.6 1005897526.8 7877331882
Table 3
Total number Machines used
Permutation sizes of sorts
104, 10 €/ <99 16000 16 SUN 3 workstations
1004, 10 i< 99 16000 16 SUN 3 workstations
1000/, 10 €i<g 45 4000 16 SUN 3 workstations
100000/, 5<i< 10 2000 5 SUN 3 workstations with > 8 Mb
12000000 100 1 VAX 785 with 128 Mb
Table 4
Hibbard's Knuth's Sedgewick’s
N Average S.D. Average S.D. Average s.D.
100 347.6 26.3 432.1 343 461.8 37.9
1000 7200.8 361.8 8§901.3 446.8 7725.2 192.0
10000 134658.1 6485.6 164960.3 7218.7 108811.7 943.0

100000 2500788.7 116348.3 2963 566.6 1331956.0 1409404.5 5281.4
1000000 45848881.9 2.045907.5 §3477706.7 2306321.8 174211183 360683

Table 6
Exchanges
Hibbard's Knuth's Seagewick's
N Observed Qur fit Observed Our fit Observed Our fit
100 347.6 360.2 432.1 381.7 461.8 456.3
200 879.5 915.9 1094.9 10883 11104 1092.4
300 1499.3 1536.8 1863.2 1873.5 1817.1 1810.6
400 2184.5 2215.8 27254 2727.8 2598.2 2577.8
500 2950.0 2944.1 3608.3 3640.6 34109 3380.3
600 3692.7 3715.1 45837 4603.9 4210.7 4210.3
700 4516.7 45236 5606.5 5611.6 S054.9 5063.1
800 5370.8 5365.8 6640.8 6659.1 5933.0 59354
900 6264.6 6238.4 7729.2 7742.6 6847.4 6824.5
1000 7200.8 7139.0 8901.3 8859.3 7725.2 7772.8
2000 17480.6 17338.6 2113957 214338 17401.2 17360.2
3000 29171.5 29166.6 36035.1 35865.6 27632.1 27700.0
4000 42300.4 42036.6 51670.2 51636.0 385728 38503.0
5000 55831.4 55871.1 68128.9 68475.1 494473 496524
6000 70411.6 70477.2 85966.8 8§6213.6 61008.9 61079.1
7000 85667.8 85755.5 104575.3 104734.0 72748.0 72737.1
8000 102007.0 101632.5 123897.5 123949.5 84929 4 845935
9000 117931.4 118051.2 143972.7 143793.2 96961.9 96624.0
10000 134658.1 134966.1 164960.3 164211.2 108811.8 108 809.2
20000 324773.0 325331.3 392459.0 392865.7 2363277 236779.2
30000 543129.3 543925.2 654918.0 653937.4 327771.2 372092.5
40000 781219.3 783095.2 9349843 938534.9 512.798.8 512196.8
50000 1038169.2 1038814.1 12394329 1242001.8 655480.2 655873.8
60000 1309707.4 1308534.4 1562018.2 1561402.6 803536.0 §02404.1
70000 1589450.2 © 1590476.7 1895389.6 1894691.7 951420.6 951311.4
80000 1882107.7 1883317.7 2240797.3 2240350.7 1100403.4 1102256.9
90000 2183821.4 2186028.8 2606280.3 2597201.2 1252909.2 12549868
100000 2500788.7 2497784.2 2963 566.6 2964298.7 1409404.5 1409304.2
200000 6000092.0 6002478.5 7092600.7 7072978.0 30131514 301518222
300000 10023436.6 10022280.4 11810720.0 11762684.6 4690850.4 46964279
400000 14429076.3 14417206.3 16910384.1 16874618.7 6425108.0 64270222
500000 19120679.6 19113501.4 22408676.5 223253413 8209540.0 §194562.7
600000 24056494.9 240645149 28156209.6 28062164.4 10015607.2 9991722.2
700000 29236932.2 29237678.8 34206881.1 34048349.0 11811384.4 118136449
800000 34603915.5 34608781.6 40458926.4 40256 606.9 13649817.6 13656870.6
900000 40198106.3 40159017.8 46810624.1 46665758.2 15521352.5 15518805.5
1000000 45848881.9 45873300.0 53477706.7 52258820.7 174211183 17397431.6
12000000 1058423789.1 1052351112.6 1209048063.7 1201162111.6 254835978.7 254636241.3

by using a poor random number generator or
time lost due to crashes. By running these
sorts simultancously, only about four weeks
of actual calendar time was used.

3. Increments which give O(N?) worst-case
bounds

In this section we provide new fits for the
running time of Shellsort using the increment
sequences suggested by Hibbard and Knuth.
The main measure of the running time is the
number of exchanges performed by the alg-
orithm. In both cases, the number of exchanges
fits c,NLH,N+c3N‘+c4N5+r5N5+cs. In
addition to this, there is additional O(Nlog N)
work corresponding to comparisons which do
not require exchanges (one comparison per
element per increment). This gives a lotal
running tome of O(N+). Table 6 shows how
well our fit compares with the observation.
The number of exchanges obscrved has a
high standard deviation for both of the
sequences in this section; in particular, for the
scquence reccommended by Knuth, the stan-
dard deviation is about 5% of the observed
value (the claim in Ref. 8 of a standard

deviation of 50000 for sorting 250 000 numbers
is apparently a typo that should read 350000).
All of the formulas represent simple un-
weighted least-mean-square fits, and it is
certainly possible that some other technigue
could produce even better fits. The fact that a
simple method produces such good fits over
such a wide range shows how likely the
functional form is. It seems likely that the
error in the fit was larger than the probable
error in the observation. The actual constants
are of little practical interest, probably insigni-
ficant and inaccurate, but for the sake of
completeness we include them here. For
Hibbard's sequence, the fit obtaincd is

1.55376872N-4.47754N +
47.98950721 Vi 335,828 N+ +
1140.81404N ¢ 1450.25

This is in contrast to the fits 1.2IN"?% and
0.39Nlog N—-2.33Nlog N previously propo-
sed. For Knuth's sequence, the fit is

173123269 N4 ~2.28388.V + 33.14 353 §7| V'
—~284.216N}+1074.63905Ni — 1541.59,

which contrasts with Knuth's conjecture of

90 THE COMPUTER JOURNAL, VOL. 34, NO. I, 1991

1.66N'?* and a logarithmic form that is not
plausible.

4. Sedgewick’s increments (h; =
9.4'-9.2"+1U4'-32'+1)

These increments exhibit a very low standard
deviation which cnables us to get fits with
much less error than in the previous section.
Table 4 compares the average number and
standard deviation (s.0.) of exchanges for
Hibbard's, Knuth's and Sedgewick’s incre-
ment sequences on a few file sizes. .

Our fit for this sequence is 0.42663452 N +
18.49281 148N —61.5 728 N4 +72.69 723933 N
+105.37474 557Ni-372.755N 14+ 483.29055
TLS10 11S. The O(N) term was too in-
significant to be reported. The data in tables §
and 6 shows that this is a very accurate fit.
Attempts to fit using other functional forms
(including the form in Section 3) give generally
poor results.

S. Extensions, conjectures and open problems

The natural open problem is to prove any of

BZIBA

T3HS Z/L
Nz %0IM3DA3S
‘(| YOIM3OQ3S
B HLONY
QuvesiH
AONY3dVd
N3HS

-

0 0
0s | 000 000 00}

001 000 000 00Z
m ——|
RN 3
\lugunosod—3| = 0S1 1 000000 00€ &
, Auaw A . v -

00z | 000 000 00

osz | A ; , e 000 000 005

00€ 000 000 009

000 000 | A419p adenuiiad oxd Aypasha guajawen

‘rueuaotod walod s alnpuodsaioy sed AuogguieN "(BUWAA e[eaopa[seuau yokiop od ‘rueuaotod i) iueuaoiod yoknzniasu
sowr QuRakqz Aapeaoad (1/6 € 6/8 9z1oA yedoeu ‘ouguauiia 1ueuAosod od njald ojuasoid 930sAA 0[Aq 7 OIMIFPAS 97194)
‘nse e nyaxd ruguaosod mpod 1904 nyad uguika mod sguiod swipia njeid A oupoy yoLusiuweu Ruinid alnzeiqoz jein)

000 000 T AYI2pP 22eInuwadd - 3134 Juznd oad 1UIIIUI IUBUAOIO] - 6] JeiD)

\..sw.w 3 S ol \\.‘\,\Wﬂ\\. .

@

) ontiut plicha 10 Lbect.
b Joarde M/WWW, 67{ Concewrerd, Aol - Ltnel, Lree aﬁawwm
(T2 115, Onolitas fls Irfovmatet., Onir Py, 1998, 45 oAenr)
fosabita, L imortasnd et (OmSert pa Amne poiomii
3 ’7/““ L. MMWJ% ChAerro - m/y% o o Blsoutele
rnere - Cogeho pliome.

febokoroprs 77%'7 Eobrtrye - e&;'o@m yZ L /y/@&m@«,’ oo

//m%uao nlatse /mﬂmdiow 70 /J%Mwé Lhlpa ‘ece omece
bonii frarar uy Aloree (0 Lom ¢ 7%4 Wmmaﬂu hlector,’
2 Loy parinage Lo A ern. foetlyyes 7VWM7M/
Y /‘“"”“@’7‘5 /4 o Aorpronbictt s %4&’7*@4//& el
a mo»éwm'a/c Gk, ué'/e 7&@/@ 7/0&’@,@20 @ parebitris-

/@M% Rl apase ' @hal, s e fro Bavi jictrotton
gwac borr, /éiﬂoa'vﬁ 7m/’2é, Cov) kronrenate (odhbomst.
Jiho rethou cast | Gl e sichorare ofatei | paracd
/Wm ' ek / groere v oAele pladebo fuovore horr, doy/ua}&,z,
Vs ka/}’ CeAngra - @7 Aloyrs.

Hoctee oty Aeveol Ao /wf@ﬂa’&é Q. Aot olemcrrantredl. il
Aiforcet, Aokoyer olhtnn, (Playotarctr Givene - ar) Ao
zﬁ&{;awé//ao 7/M4«m¢wm7ﬁmm)
W\V’W\»{/ Ma.zj /ywm% %4? %awm /?7?04’4//&0

e e
/O/M Conulact folalitntre /Amfwﬂc/ (7 3,% 15, 31 @ 6 3 wrivatetsber,

/(www # 4/%@ m/mm'/ua WWW) CRC W -Mit)

(70
pe Rlere panile G o plmttovoe come Hueo.
Ww /Wm ' Wr'/%/ch.uoa QW}@W;(&'
/B ﬂymwrt@o‘v ,?(c /wadwv m’? A oo 000 OWJ/M, Pace
/ Dlasch, imset-, Ak) /wmw e WL@ ppraeeress Qs -
Chrtrr oloms’ o 1000 000 Al Wm /m%/w AR,
mohooine 7/&4/% Ll %o/twm/imm ohopree)

/waywmmu Hotace 'y 05 e Aol
0/3 /J,o Peairkt
L po ctutte
gyuw/)mJ] Qe 77@&'”? P AL s /pcé /MM“,‘
/B;/a relore eerm. /&MW Snas' 1, 10,20, 30, $0, 50, 60 jectrotic,

Cara
o@w&, mm&ady,b 06’/“2 /77%0 W”‘/ /%ﬂ WW /6’00(M
/y/‘a/wwéooa/ 74 &mu ” d(/rn, mﬁww) L //mfo«,o
,éumm/jw /@(764 ' %aﬂ_ﬁ, /Dja,ﬁ /,,g,,,,.wwyw Motriol,
S ﬂWa'o%"
/@/WJMW nlovne /7%7@ /o c'a/c 77 Ma/mw«é ,a,aj W
Yz a e
[ioe Lo ok 2oprocte, sHato &WM/‘ ”&/W?W
/o/m»@/cu& éé’]/u . Aakesleatie, /7/444%44«, %&W Lakh ey
/?'m:el/z /}‘4@7%‘/«‘%’ e ﬁo7ﬂéo, re ﬁ&&comam'?wumw : l/r*
Mmmzw:u /u,ogdz;a,f e orreelo

/'L/ﬁl)ée E Mlﬁ ,74’4 /,’?fﬁ';”fl}'/:ﬁ'l"ﬁ l’{’j’:‘/f’t’/{&ro

(a) (b)
red-balancing transformations
50 S e S s
_ 5 first strategy
first strategy 40+ second strategy
2 500 - second strategy 30‘;
'g 2
@ 20
0
20 8 10
40 4 |
60 2 concurrent processes 0
lock costs black. b1 rb2 root trivial
(c)
x 10°
o2
£
515
1]
c
g
B
g 05
€
2 0
2
e
[
concurrent processes .-
trivial
64 = jb*/l b2
blacking
c E first strategy
second strategy
(d)

second strategy —

umber of requests

first strategy —— =

4
concurrent processes 1 lock costs

Figure 28: Comparison of the two strategies to handle red-red conflicts, exemplary shown by the
chromatic tree: (a) Average time needed to perform a red-balancing transformation. (b) Propor-
tion of the performed red-balancing transformations (using 63 user processes and 1 rebalancing
process). (c¢) Total number of performed red-balancing transformations. (d) Number of unsettled
rebalancing requests after the time used to perform 1000000 dictionary operations.

31

4) ﬁﬂ?ﬂ*@lﬂ /40«5’0&,&,’ !
A. Pt ot 2t : Hidobwar am,;,aw %%Wm,, o G cace mé(?
% bl - elearen, srrechorisgns an /44,//;0204/2 wW?
(/Wuﬁf j/a/-h %Mﬂwm G @/u&cwm #(#2003), 3-37
ﬁsz e (Teatirn) omata o, Al ae 7:960(9 . Rsphegrerded
ﬁ/a.lw% Vlaamv%x}f/o'
MC’M/@%’/,W m}m, o Aisjutac. MMM/OQ
WO | Soen. widote’ prece /womy 0 cothdialets, MM;@-,/
/47 el %’%’ /mémm Aozveotrme AL 2 onexion Loppoibu
Mrrleduet, moeavotilse /70647}% Gudlna i abilia, l@ e’
/IMMMXJ/ /é‘&/'-&, /4&7@41? I /m& / a ﬂ«%&/ﬂlc _ /za /@7; /&é&-&m
/ ,é-"éq// o T, ST ST ¥ /.,
75@/3,4’”7#’\%%: 47 Lderes,, ﬁmb% /ze/aﬂim/a;’j/}c
j/a%“/ otz (lﬂj o pelcte o WM@JMM‘ .2).
(o 4 y
f@& P A Nveteta, WM Al Halet Blraots
/zm;,z - m&au) , W rvoling a /ym,ag'
ﬂ/ﬂﬁw -mwfj@m /é’a&/M(‘& M,%b‘
/é?’ﬂ"‘é l’ﬁ"n - M@O&j e e jy,w /‘506(718 MCZ,/;&&@?/&(: :
Wlliera ' /a/qa»w(/a, 760‘4/6414&: A Lvrra /mdmc/ly,aco{ef
/Ld(?«f a/i MWW%W/MQM
e pontetn
/M Liar e M’W@ 5 /Jof—’vm’/m;nc %MJ

7720 W ek, ALolie,

S

forlialy ot gorssge prste M carasld g fyeas ¢
aT L gy drideats S &’Moj oeLsan, ﬂ%mm.’e? mi@‘p 4 a«ﬁw/m/ A
/37(foedd poflyare /Mz;m,’z Aal. pofehie, I#Hpes.
Wik, oo Hotoa WW a Mvatida pisire feird Moatita, Aylo.

)) /o ; r
A ﬂx/yao&%w < 7&4 /ua 7l A ariris o, /aﬂq@é /,,_,,4,/{ Lrva, amche,

/< Loslovaon. Aovdloboe arity /idrw{&;/}w/,‘ el a aﬁm&é» Ay bo,
7

J
//7%4&14@ a?fﬂ.{}{/; a fw}/,y(«,‘

i /JQ,C',(, /1 /70724&;/%1: Aol bo by /773444/4 ! praloota af,mfa /m//?&'t’ o R

Aol m(/(/,(/’m oé,m'/ L e /vcwwxyé /vmz 75&4@ /%/mwca’
. eyl Aooftdee mym lakesbechihs oott parec /;40
14 CM-//\/C} 0%. Cirvoten SNal e ! Pgsiec 7”4/4//»& AL /7%4«;‘;-&%’
rrreloota / prechec /M /(/m olala otisotre !

/ / / - /] /
/{/Q ko' zbe v /70”?6 Cotl petriviels, J”‘/é//'!//'//e/d/7¢4/z7

C. Barrett et al., Statistical Analysis of Algorithms, JGAA, 7(1) 3-31 (2003) 17

scenarios perform the best.!

ANOVA has the following three advantages over individual ¢-tests? when the
number of groups being compared is greater than two. See [9] for more details.
In our case, we have four algorithms and four scenarios. Standard statistics
terminology for a hypothesis that we wish to test, is null hypothesis.

o It gives accurate and known type-I error probability.?

e It is more powerful i.e. if null hypothesis is false, it is more likely to be
rejected.

o It can assess the effects of two or more independent variables simultane-
ously.

5.3 Mathematical Model

Quality of Solution: We first describe the experiment for the quality of solu-
tion i.e. pas. We use a two-factor ANOVA model since our experiment involves
two factors which are:

1. The algorithms: A;,7 =1,2,3 and 4.
2. The scenario: S;,7 =1,2,3 and 4.

Following classical statistics terminology, we will sometimes refer to algo-
rithms as treatments and the scenarios as blocks. We will use A to denote the
set of algorithms and S to denote the set of scenarios. For each algorithm-
scenario pair we have 30 observations (or replicates). When testing the efficacy
of the algorithms, we use 4 algorithms, each having 120 observations (30 for
each scenario) from the corresponding population. The design of experiment
used here is a fired-effect complete randomized block. Fized-effect because the
factors are fixed as opposed to randomly drawn from a class of algorithms or sce-
narios; the conclusions drawn from this model will hold only for these particular
algorithms and scenarios. Complete implies that the number of observations are
the same for each block. Randomized refers to the 30 replicates being drawn
randomly. We wish to test the hypothesis:

IThe populations in each of the groups are assumed to be normally distributed and have
equal variances. The effect of violation of ANOVA assumptions of normality and homogeneity
of variances have been tested in the literature ([10]) and the results show:

e Non-normality has negligible consequences on type-I and II error probabilities unless
the populations are highly skewed or the sample is very small.

e When the design is balanced, i.e. the number of observations are the same for each
group, violation of homogeneity of variance assumption has negligible consequences on
the accuracy of type-I error probabilities.

2¢-test checks for the significance of the difference in the means of two samples. It can
assess whether the difference in sample means is just due to sampling error or they really are
from two populations with different means.

3The probability of rejecting a null hypothesis when it is actually true.

-

*

C. Barrett et al., Statistical Analysis of Algorithms, JGAA, 7(1) 3-31 (2003) 18

Is the mean quality of solution provided by different algorithms the
same, against the alternative hypothesis that some or all of these
means are unequal?

The model for randomized block design includes constants for measuring the
scenario effect (block effect), the algorithm effect (treatment effect) and a pos-
sible interaction between the scenarios and the algorithms. The appropriate
mathematical model is as follows:

Xijk = p+ 7 + B + (18)i5 + €4jr»

where X;;;, is the measurement (p4s) for the kth sample within the ith al-
gorithm and the jth scenario. 7; is the algorithm effect. B; is the scenario
effect. (78)i; captures the interaction present between the algorithms and the
scenarios. €;j; is the random error. See [8, 9] for further details on ANOVA.

We use S-Plus [15] software to run two-factor ANOVA to test the following
three different null hypotheses.

1. Are the means given by the 4 different algorithms equal? The null hy-
pothesis here is, Hy : 7 = 70 = 13 = 7.

2. Are the means given by the 4 different scenarios equal? The null hypoth-
esis here is, Hy : 01 = B2 = 83 = (4.

3. Is there any interaction between the two factors? The null hypothesis here
iS, H() : (Tﬂ)ij =0.

The results of two-factor ANOVA are shown in Table 1 and Table 2. In
the following discussion, we explain the meaning of each column in Table 1.
DF refers to the degrees of freedom, SS refers to the sum of squared deviations
from the mean. M S refers to the mean square error, which is the sum of squares
divided by the degrees of freedom.*

4The sum of squares for the algorithm factor can be calculated as:
S84 =nJZ;(X;. —X...)?

where n is the number of replicates, J is the number of scenarios, X .. is the mean of algorithm
i across all scenarios and X ... is the grand mean across all algorithms and scenarios. Recall
that in our case n = 30 and J = 4 yielding a total sample size of 120.

The sum of squares for scenario factor can be calculated as:

585 =nIs;(X ;. — X...)2

where as before n is the number of replicates, I is the number of algorithms and X. j. is the
mean of scenario j across all algorithms. Again, in our case n = 30 and I = 4.
The sum of squares for algorithms and scenario interaction is:

SSas = nZiTi[Xij. — (X... + % + ;)2

Here Yij. is the mean of observations for the algorithm i scenario j pair. #; and ,@j are
respectively the estimated least square values of 7; and B;. The sum of squares “within”
refers to the squared difference between each observation and the mean of the scenario and
algorithm of which it is a member. It is also referred as the residual sum of squares. This can
be calculated as: i

SSw = nEjT; Tk (Xijk — Xij-)?

15

C. Barrett et al., Statistical Analysis of Algorithms, JGAA, 7(1) 3-31 (2003) 19

The p-value gives the smallest level of significance at which the null hypoth-
esis can be rejected.’ The lower the p-value, the lesser the agreement between
the data and the null hypothesis. Finally the F-test is as follows. To test the
null hypothesis, i.e., whether the population means are equal, ANOVA com-
pares two estimates of o2, The first estimate is based on the variability of each
population mean around the grand mean. The second is based on the variability
of the observations in each population around the mean of that population. If
the null hypothesis is true, the two estimates of o2 should be essentially the
same. Otherwise, if the populations have different means, the variability of the
population mean around the grand mean will be much higher than the variabil-
ity within the population. The null hypothesis in the F-test will be accepted if
the two estimates of o2 are almost equal.

In a two-factor fixed-effect ANOVA, three separate F-tests are performed:
two tests for the factors, and the third for the interaction term. The null
hypothesis for the first factor can be written as:

H{,“ PR = pon = =
which is equivalent to writing: Hy : 7y = To = 73 = 74. The F-test is:

_ _SS4/(I-1)
AT SSw/II(n-1)

and the null hypothesis for the second factor can be written as:
H(‘)9 TR = e = = g
which is equivalent to writing: Hy : 8; = B2 = B3 = B4. The F-test is:
§Ss/(J - 1)
7 SSw/lin=1)
and the null hypothesis for the interaction term can be written as:
Hg'S : (r8)ij = 0.

The F-test is:
_ SSus/(I-1)(J = 1)
SSw/IJ(n—1)
If this F-ratio is close to 1, the null hypothesis is true. If it is considerably
larger — implying that the variance between means is larger than the variance

Fus

The total sum of squares is

SSt =884 + SSs + SSas + SSw

5To obtain a p-value for say F4, the algorithm effect, we would look across the row associ-
ated with 3 degree of freedom in the numerator and 464 degrees of freedom in the denominator
in the F-distribution table and find the largest value that is still less than the one obtained
experimentally. From this value, we obtain a p-value of 0 for F 4.

2,

C. Barrett et al., Statistical Analysis of Algorithms, JGAA, 7(1) 3-31 (2003) 20

Source DF | SS§ MS | F-test | p-value
Scenario (Block) 3 0.14 | 0.05 | 43.38 0

Algorithm (Treatment) | 3 | 22.78 | 7.59 | 6792.60 0

Scenario:Algorithm 9 0.12 | 0.01 15.90 0
Residuals 464 | 0.40 | .0008
Total 479 | 23.45

Table 1: Results of Two-Factor ANOVA: This table shows results of two-
factor ANOVA where the factors are algorithms and scenarios. The measure-
ment is the quality of solution, given by p4s. The p-values show that the
algorithm effect, scenario effect and the interaction between the algorithms and
scenarios are all significant at any level of confidence.

within a population — the null hypothesis is rejected. The F distribution table
should be checked to see if the F-ratio is significantly large.

The results in Table 1 show that all the above three null hypothesis are
rejected at any significance level. This implies that the performance (mea-
sured by pas) of at least one of the algorithms is significantly different from
the other algorithms. Also, different scenarios make a difference in the perfor-
mance. Finally, the scenarios and the algorithms interact in a significant way.
The interaction implies that the performance of the algorithms are different for
different scenarios.

5.3.1 Contrasts

The next question of interest is what really caused the rejection of the null
hypothesis; just knowing that at least one of the algorithms is different does not
help us identify which algorithm is significantly different. To answer this we use
a procedure called contrast. A contrast C among I population means (i) is a
linear combination of the form

C = Yiaip; = arpr +aopg + - +arpr

such that the sum of contrast coefficients ¥;c; is zero. In the absence of true

population means, we use the unbiased sample means which gives the estimated

contrast as: . .
C=i;X;=a1 X1+ 0Xo+ - +arXy.

The contrast coefficients o, ag, -- -, ar are just positive and negative numbers
that define the particular hypothesis to be tested. The null hypothesis states
that the value of a parameter of interest for every contrast is zero, i.e., Hy : C =

(17

