Data types
Declaration of basic global data types:
[ NAME, PHONE |

More complex types can be created using constructors: subset relation, power set, cartesian product, union,
functions (mappings), other relations, etc. We will use them later.

The basic types NAME and PHONE were given ”from outside”, as their structures and elements of the
corresponding sets are not defined explicitly. A data type is declared as basic, when it is not really important
what are the objects of the type. We can say that it is a kind of abstraction.

In the case of smaller types (sets), we can use enumeration to define them.

Cities = { Praha, Brno, Plzen, Ostrava, Kladno}

A set can be defined also by its characteristic predicate.

Pos ={z: Int |z >0}

How to declare a function data type:

length : NAME — N

Restricting function values through predicates (constraints):

pow2: R — R
Vz:Repow2(z)>0

Let R is a relation between X and Y, defined as X <+ Y. Its domain and range are denoted by dom R and
ran R, respectively.

The Z language also supports the following operations:
e Domain restriction of R to A (i.e., the first element of a pair must belong to A): A < R.
e Range restriction: R > B.
e Domain subtraction (first element must not belong to 4): 4 9 R.
e Range subtraction: R & B.

Transitive closure of the relation R is written as RT.

Alternative syntax for defining new types looks like this:

To=cl o |lem | difE) ... | dal(En))

where ¢1,..., ¢, are constants, di,...,d, are constructors, and Fj,..., F, are set expressions (they may
contain already defined types).



Example:

nat ::= zero | succ{(nat))

The same type can be defined also in this way (i.e., using this syntax):

zero : nat
succ : nat + nat

Vn:naten=zeroV3Im: nat e n = succ(m)

For example, we can define a type of binary trees where leafs are labeled with natural numbers.
Tree ::= leaf (N)) | branch{{ Tree x Tree))

Label for a particular node captures the whole subtree rooted by the node (recursively).

However, it is not really clear (established), or at least I do not know, which syntax for declaring types is
more common or preferable in the Z language community.

Schemas

Syntax (template):

__name
declarations

constraints

Schemas are used to define (1) state and (2) operations.

Example of a schema that defines state:

__AddressBook
persons : P NAME
contacts : NAME +~ PHONE

persons = dom contacts

Alternative syntax (linear, usable for tools):

AddressBook = [ persons : P NAME, contacts : NAME + PHONE | persons = dom contacts |

Example of a schema that specifies an update operation:

__AddContact
A AddressBook
name? : NAME
phone? : PHONE

name? ¢ persons

contacts’ = contacts ® {name? — phone?}




The A symbol indicates (means) that the operation updates the state of the module ” AddressBook”. Vari-
ables having the suffix ”?” represent input (arguments of this operation). Variables and terms with the suffix
’ (apostrophe) represent the post-state of the operation, i.e. values of state variables after the operation fin-
ishes all changes (steps). Variables without the suffix ’ represent the pre-state, i.e. values of state variables
before the execution of this operation started (values how they were at the time when the operation was
called). The map (function) ”contacts” is extended with another pair of values.

For operations that just read the current state, we can use the following syntax:

__ GetPhoneNumber
ZAddressBook
name? : NAME
phone! : PHONE

phone! = contacts(name)

The symbol Z means that s’ = s for every state variable s in the module, i.e. the state is not changed at all
by this operation. Suffix ”!” indicates output variables (return values).

Inference rules

Template for inference rules:
premisses

[ name |
conclusion

stde condition

Each rule consists of premisses and conclusion. When all the given premisses are satisfied, then the conclusion
must also hold. Sometimes the side condition must also hold - it means that an inference rule can be used
only when this side condition is true.

Several examples of inference rules follow. They are usable in proving claims about specifications in Z.

Introducing conjunction:

p q )
[ A —intro |
pPAg

Elimination of a conjunction:
PAq

[A —eliml]
p

Note that inference rules can be nested, i.e. they can make a tree that represents a proof derivation.
The Z language and inference engine also supports quantifiers and term substitution.
Universal quantifier:

tea Vz:aep

YV —elim
p[t/z] | |




Existential quantifier:

t€a p[t/x]

[ 3 —intro |
Jz:aep

Equivalent objects can be substituted:

s=t plt/a]

pls/7]

[ eq — sub]

To verify some claim, you may also need to use axioms over data types and variables of the given types.

Definition of an axiom looks like this:

z:S
p

Alternative notation (syntax) for axioms:

—— [ aziom ]
TESApD

Example:

mazxsize : N
mazsize > 0
Here, mazsize is just a variable name.

Global variables and their values can be defined through axioms (e.g., the maxsize variable), and then used
in any schema.

Other language constructs

Generic schemas (parameterizable) are defined in this way:

__name[T]
x: S
p

Notice the generic parameter T

Example (generic stack):

__Stack[T)]
data : LIST|T]
top : INT

top =2 0




In addition, you can also define generic functions and relations.

Example (generic specification of a subset relation over the set X):

=[X]
_C_:PXoPX
Vs, t:PX e
sCteVe: Xerzes=zet

You can use multiple generic formal parameters. Example (function that returns the first element of a tuple):

:[Xv Y]
first: X xY = X
Vz:X;y:Ye

first(z,y) =«

Unnamed generic schemas (constants, definitions) are often used too. They can be included or embedded
inside more complex schemas (with proper instantiation). For example, the schema above defines a large
family (collection) of functions named first, one for every possible tuple of concrete values of the formal
parameters. Concrete return values of these functions are specified by the constraint formula.

Selecting one element of a tuple:
(Ila T2,y x’n)m = Tm
The tuple can be an element of a data type created using the cartesian product operator.

The Z language also supports the following notation for sequences.

Declaration: (1,2,3,4).

Concatenation: (1,2,3) ™ (4,5).

Filtering (projection): (1,2,3,4,1,2,3,4,5) | {1,2,5} = (1,2,1,2,5).

Length: #(1,2,3,1,2,3) =6.

Note that a sequence of elements from the set X can be modeled as a function from N to X.



