Schedulability analysis for Java finalizers

Thomas Bggholm, René R. Hansen, Anders P. Ravn,
Bent Thomsen, and Hans Sgndergaard

CISS, Aalborg University
VIA University College, Horsens

JTRES, August 2010



o Finalizers for Java

@ Unpredictable
e executed at garbage collection

@ in a separate thread

o May not be executed at all

2/14



Introduction Restricted Framework
®000000 0000

Introduction

@ Finalizers for Java

@ Unpredictable
e executed at garbage collection
@ in a separate thread

e May not be executed at all

2/14

Conclusion
oo



Introduction Restricted Framework Conclusion
0e00000 0000 (e]e}

Java finalizers in real-time systems

@ Java finalizers are not suitable for real-time systems

e which task will pay for execution time?
e exactly when will clean-up code run?
e how do we account for finalization in schedulability analysis?

3/14



Introduction Restricted Framework Conclusion
0e00000 0000 (e]e}

Java finalizers in real-time systems

@ Java finalizers are not suitable for real-time systems

e which task will pay for execution time?
e exactly when will clean-up code run?
e how do we account for finalization in schedulability analysis?

o Finalizers are discouraged in RTSJ
e and not allowed in SCJ

3/14



Introduction Restricted Framework Conclusion
00®@0000 0000 (e]e}

Clean-up mechanism

@ We do need a clean-up mechanism for real-time Java
e must be executed even if exceptions are thrown
@ Example situations:

o Java wrapping up C-code using malloc/free
e clean-up of temporary files/buffers
e dealing with hardware

4/14



o finalizers (Java)

o unpredictable
o try/finally

o the alternative
o destructors (C++)

o predictable

5/14



try{
// init code

} finally{
// clean—up code

}

@ Why is this bad?
@ unnatural programming style
try/finally has to be written every time a class is used
e also for derivatives
@ An opportunity to make mistakes
o clean-up without try/finally?
@ no clean up at all?
@ Should it be the job of the programmer to remember to do
clean-up?
6/14 o then we depend on documentation and communication

(]



Introduction Restricted Framework
0000e00 0000
try/finally

Manual clean-up

try{
// init code

} finally{
// clean—up code

}

Conclusion
oo

Why is this bad?
unnatural programming style

o also for derivatives

An opportunity to make mistakes
o clean-up without try/finally?
@ no clean up at all?

@ Should it be the job of the programmer to remember to do

clean-up?

6/14 o then we depend on documentation and communication

try/finally has to be written every time a class is used



Introduction Restricted Framework Conclusion
000000 0000

Java Finalizers / C++ Destructors

[e]e]

@ centralized clean-up

@ natural programming style
@ executed automatically

e also in the case of exceptions
@ is written once

@ is inherited
e may be overridden by derivatives

@ C++ destructors are predictable

e executed when a stack-allocated object goes out of scope
e executed at explicit deallocation

7/14



Introduction Restricted Framework Conclusion
000000e 0000 (e]e}

Making finalizers suitable

@ Predictable clean-up mechanism for real-time Java
o destructor-like finalizers for real-time Java

@ Using task-private scoped memory makes finalizers behave like
destructors

@ Developers no longer need to do clean-up manually

8/14



Introduction Restricted Framework Conclusion
0000000 ©000 oo

Our profiles make finalizers predictable?

@ Predictable Java
o Similar to SCJ
@ Disciplined use of scoped memory
@ a task is responsible for finalizing private objects

@ We are able to include finalizers in schedulability analysis

9/14



Introduction Restricted Framework Conclusion
0000000 0®00 oo

Simple WCET analysis

@ Each event handler has a private memory
@ Object initializations are registered during handler execution

@ Object finalization, will be performed after handler execution

e in WCET analysis, simply add the cost of finalizers for created
objects

10/14



Ri=C+ Y. [R/T]IG
Jj€hp(i)

C; = WCET; + Z WCET finalizer,
ke WCObj(i)

11/14



Response time analysis

Ri=C+ Y [R/TIG
j€hp(i)

G =WCET;+ Y WCETfinalizer,
ke WCOBj(i)

11/14



Introduction Restricted Framework Conclusion
0000000 cooe oo

Automated schedulability analysis

@ SARTS: a tool for automated schedulability analysis

o from byte-code to timed automata models
e model-checking using UPPAAL

@ Includes finalizers

e for all program paths, only finalizers of objects actually created
are considered

@ Simple extension to existing tool

12/14



Introduction Restricted Framework
0000000 0000
Conclusion

@ Finalizers can be both useful and predictable

public void finalize(){ try{
//cleanup a = new ..
b = new ...

//code
} finally{
a.cleanup();

b.cleanup();

}

@ Natural style of programming
@ Less boilerplate-code

@ Less possibilities for program errors

13/14

Conclusion
®0



Introduction Restricted Framework Conclusion
0000000 0000 oe

Conclusion

@ Can easily be included in response time analysis
@ Finalizers could be allowed in SCJ
@ This might be possible in RTSJ as well

14/14



