
Schedulability analysis for Java finalizers

Thomas Bøgholm, René R. Hansen, Anders P. Ravn,
Bent Thomsen, and Hans Søndergaard

CISS, Aalborg University
VIA University College, Horsens

JTRES, August 2010



Introduction Restricted Framework Conclusion

Introduction

Finalizers for Java

Unpredictable
executed at garbage collection

in a separate thread

May not be executed at all

2/14



Introduction Restricted Framework Conclusion

Introduction

Finalizers for Java

Unpredictable
executed at garbage collection

in a separate thread

May not be executed at all

2/14



Introduction Restricted Framework Conclusion

Java finalizers in real-time systems

Java finalizers are not suitable for real-time systems

which task will pay for execution time?
exactly when will clean-up code run?
how do we account for finalization in schedulability analysis?

Finalizers are discouraged in RTSJ

and not allowed in SCJ

3/14



Introduction Restricted Framework Conclusion

Java finalizers in real-time systems

Java finalizers are not suitable for real-time systems

which task will pay for execution time?
exactly when will clean-up code run?
how do we account for finalization in schedulability analysis?

Finalizers are discouraged in RTSJ

and not allowed in SCJ

3/14



Introduction Restricted Framework Conclusion

Clean-up mechanism

We do need a clean-up mechanism for real-time Java

must be executed even if exceptions are thrown

Example situations:

Java wrapping up C-code using malloc/free
clean-up of temporary files/buffers
dealing with hardware

4/14



Introduction Restricted Framework Conclusion

Strategies

finalizers (Java)

unpredictable

try/finally

the alternative

destructors (C++)

predictable

5/14



Introduction Restricted Framework Conclusion

try/finally

Manual clean-up

try{
// init code
} finally{
// clean−up code
}

Why is this bad?
unnatural programming style
try/finally has to be written every time a class is used

also for derivatives
An opportunity to make mistakes

clean-up without try/finally?
no clean up at all?

Should it be the job of the programmer to remember to do
clean-up?

then we depend on documentation and communication6/14



Introduction Restricted Framework Conclusion

try/finally

Manual clean-up

try{
// init code
} finally{
// clean−up code
}

Why is this bad?
unnatural programming style
try/finally has to be written every time a class is used

also for derivatives
An opportunity to make mistakes

clean-up without try/finally?
no clean up at all?

Should it be the job of the programmer to remember to do
clean-up?

then we depend on documentation and communication6/14



Introduction Restricted Framework Conclusion

Java Finalizers / C++ Destructors

centralized clean-up

natural programming style

executed automatically

also in the case of exceptions

is written once

is inherited
may be overridden by derivatives

C++ destructors are predictable

executed when a stack-allocated object goes out of scope
executed at explicit deallocation

7/14



Introduction Restricted Framework Conclusion

Making finalizers suitable

Predictable clean-up mechanism for real-time Java

destructor-like finalizers for real-time Java

Using task-private scoped memory makes finalizers behave like
destructors

Developers no longer need to do clean-up manually

8/14



Introduction Restricted Framework Conclusion

Our profiles make finalizers predictable?

Predictable Java

Similar to SCJ

Disciplined use of scoped memory

a task is responsible for finalizing private objects

We are able to include finalizers in schedulability analysis

9/14



Introduction Restricted Framework Conclusion

Simple WCET analysis

Each event handler has a private memory

Object initializations are registered during handler execution

Object finalization, will be performed after handler execution

in WCET analysis, simply add the cost of finalizers for created
objects

10/14



Introduction Restricted Framework Conclusion

Response time analysis

Ri = Ci +
∑

j∈hp(i)

dRi/TjeCj

Ci = WCETi +
∑

k∈WCObj(i)

WCETfinalizerk

11/14



Introduction Restricted Framework Conclusion

Response time analysis

Ri = Ci +
∑

j∈hp(i)

dRi/TjeCj

Ci = WCETi +
∑

k∈WCObj(i)

WCETfinalizerk

11/14



Introduction Restricted Framework Conclusion

Automated schedulability analysis

SARTS: a tool for automated schedulability analysis

from byte-code to timed automata models
model-checking using Uppaal

Includes finalizers

for all program paths, only finalizers of objects actually created
are considered

Simple extension to existing tool

12/14



Introduction Restricted Framework Conclusion

Conclusion

Finalizers can be both useful and predictable

public void finalize(){
//cleanup
}

try{
a = new ...
b = new ...
//code
} finally{

a.cleanup();
b.cleanup();
}

Natural style of programming

Less boilerplate-code

Less possibilities for program errors

13/14



Introduction Restricted Framework Conclusion

Conclusion

Can easily be included in response time analysis

Finalizers could be allowed in SCJ

This might be possible in RTSJ as well

14/14


