The Design of SafeJML,

a Specification Language for SCJ with Support for Timing Constraints

Ghaith Haddad, Faraz Hussain and Gary T. Leavens

School of Electrical Engineering and Computer Science

University of Central Florida




Goals of SafeJML’s design

» Support SCJ (+ C code for drivers)
> Working with the 0SCJ team from Purdue
» Specification of timing constraints for methods, etc.
> Modular division of timing budget
> Isolation of code causing timing problems
» Support both static verification and dynamic
checking

o aiT for static verification(WCET)
> RapiTime for detecting violations dynamically




Basic Decisions

» Use JML style annotation comments,
//@ duration 10 * MICROSEC;
not Java annotations
@Duration(“10 * MICROSEC”)

» Allow specifier to communicate with analysis tools
(RapiTime and aiT) with new JML syntax



Presenter
Presentation Notes
We use JML style annotation comments, because Java annotations are too limiting (e.g., can’t be statements).
We use new syntax to communicate with analysis tools so as to get our tool up and running faster, instead of doing a lot of static analysis and inference, but we may want to change that later.


Duration Clauses for Methods

duration-clause ::= duration spec-expression ;

/*@ public behavior

@ requires position.x >= 0.0f && position.y >= 0.0f;
@ duration 3 * MILLISEC;

@ also

@ public behavior

@ requires position.x < 0.6f ”~ position.y < 0.0f;
@ duration 4 * MILLISEC;

@ also

@ public behavior

@ requires position.x < 0.0f && position.y < 0.0f;
@ duration 5 * MILLISEC;

@*/

protected void voxelHash(Vector3d position, Vector2d voxel)



Presenter
Presentation Notes
The middle case applies if not both position components are negative.


(Duration) Annotations
on Individual Statements

refining-statement ::= refining spec-statement statement

| refining generic-spec-statement-case statement
generic-spec-statement-case ::= ... | simple-spec-statement-body
simple-spec-statement-body ::=

simple-spec-statement-clause simple-spec-statement-clause*

//@ refining
//@ duration 3 * MILLISEC;
{mQ); }




Problem: Subtype Polymorphism

» Subtype objects often contain more information
than supertype objects
- E.g., FighterJdet <: Aircraft

» Overriding methods will often need more time
than the methods they override
- E.g., takeoffChecks()

» How to specify methods to allow overriding in
subtypes and still do timing analysis?




Approaches to Subtype Polymorphism

» Use different method names for subtypes
> don’t use overriding

» Underspecification

o allow maximum conceivable time for method

» Abstract Predicate Families
o time depends on dynamic type

08/19/2010



Assumptions to give type bounds

» To facilitate abstract predicate families,
assume statements can give type bounds

assume SafeJML.type bound(S,E,T);

Example

//@ assume SafelML.type bound(Vector3d, vo, Vector2d);




Communicating with Tools

» Features to pass information to RapiTime (or aiT)

> When to use splitting (context-sensitive analysis)
for a method

> maximum loop iterations

° maximum executions of a conditionally guarded block
per loop execution

08/19/2010



Violation Reporting

Timing contracts

» duration-clause,
notify user after program finishes

Tool communication features

» max-loop-iter-stmt, local-worst-case-stmt:
throw JMLAssertionError when detected



Presenter
Presentation Notes
For duration, need information from RapiTime


Implementation and Evaluation

» Implementation

° Built on the JAJML compiler, a JML implementation based
on JastAdd and JastAdd] Java Compiler

» Evaluation
> MiniCDj, a SCJ rewrite of the CDx benchmark suite
o More evaluation needed!

See http://tinyurl.com/28zllux



http://tinyurl.com/28zllux

®

Related Work

» Krone et al.

> duration clause for timing constraints, adopted by JML

> Supports modular verification of performance constraints
» RapiTime

> Hybrid dynamic analysis of execution times

> No specification of the times allowed.

» AbsInt’s aiT
o Static analysis for WCET times

> Uses annotation files and binaries generated from C or
Ada compilers



Presenter
Presentation Notes
AbsInt’s aiT [FHL01, HLT03, HF06] is another example of a tool that perform static analysis for WCET times. This tool works on pairs of files. Each pair contains a binary file generated by a C compiler and an “AIS” file that contains additional annotation information. The annotation information in the AIS files describes bounds for loops, possible targets for (indirect) calls, and timing information for library functions. This tool has a very precise analysis for WCET times that
works on processors commonly used for real-time and embedded systems (such as the ARM-7 and the Motorola PowerPC) in combination with industrial strength C compilers (such as the ARM compiler or the GNU C Compiler). However, although aiT analysis is neither path-sensitive nor context sensitive, it still can be used to perform partial analysis for specific functions or execution trees, since one can determine the analysis entry point.



Future Work

» Evalution and refinement of design
o Case studies

08/19/2010



Thank you...

Questions?




	The Design of SafeJML,�a Specification Language for SCJ with Support for Timing Constraints
	Goals of SafeJML’s design
	Basic Decisions
	Duration Clauses for Methods
	(Duration) Annotations �on Individual Statements
	Problem: Subtype Polymorphism
	Approaches to Subtype Polymorphism
	Assumptions to give type bounds
	Communicating with Tools
	Violation Reporting
	Implementation and Evaluation
	Related Work
	Future Work
	Thank you…

