
1

A Locality Model for the
Real-Time Specification
for Java

Abdul Haseeb Malik

Andy Wellings

Yang Chang



Introduction

 Shift to multiprocessors

 UMA SMPs
 Single address space

 Cache coherence

 Uniform memory access

 NUMA systems
 Single address space

 Global or partial cache
coherence

 Non-uniform memory
access

2

Processor Processor Processor Processor

Memory

Memory 0

Processor
0

Memory 1

Processor
1

Memory 2

Processor
2

Memory 3

Processor
3



Problem

 Java applications experience unpredictable
delays due to a large number of remote
accesses.

 Remote accesses take considerably longer
than local accesses.

 The application cannot differentiate between
local and remote accesses because
 NUMA architecture is hidden from the application.

 Operating system manages allocation policies.

 Application is unaware of these allocation policies.

3



Related Work

 High performance computing e.g.
X10, Fortress, Chapel etc.

 Representation of the architecture.

 Grouping of tasks and objects.

 Programmers can explicitly allocate
objects on specific memory areas.

4



Existing Support

1. AffinitySet class

 Threads can be allocated on specific
processors.

2. Physical memory framework

 Can be used to create physical memory
areas on specific nodes.

 Both can be used to allocate threads
and objects individually on desired
nodes.

5



The Locality Model

 Introduces new abstractions which

 Provide visibility into the system architecture.

 Threads and objects grouped together.

 Groups allocated
 Statically by the programmer

 Dynamically at runtime

6



The Locality Model

 Locations: collection of processors, memory
banks and devices.
 Locale: logical representation of SMP.

 Neighbourhood: logical representation of cc-NUMA
 RTJVMs mapped on neighbourhoods.

 District: logical representation of NUMA.

 Execution site(ES): capable of executing an RTSJ
program.

7



Execution Site

 Execution site created for
more predictable
behaviour.

 Has a heap, immortal
memory and backing store
for scoped memory areas.

 Factory methods to create
threads.

 Factory methods to create
scoped memory areas.

8



Creation and Mapping
of Execution Sites

 Factory methods in the neighbourhood class

 Static mapping
 forced by the input of the programmer.

 application is not portable.

 Dynamic mapping
 based on reservations.

 resource requirements requested for each execution
site in the form of reservation parameters.

 mapped by the runtime based on the requirements
of the execution site.

9



Prototype

 Prototype based on jRate
over linux.

 Extensions made to the
jRate runtime library.
 memory areas in ES created

using the NUMA API.

 threads created inherit cpu
affinity of the execution site.

 16 processor cc-NUMA system
based on AMD opteron.

10



Experiment: Sieve of
Eratosthenes

11

 Highly parallel algorithm
 1 thread for each prime number.

 For all prime numbers< 15000 ~ 1754 threads.

 Experiment will measure execution times for
these 1754 threads using the locality model.



Results

 In cases 2-4, 4
execution sites
created

 Case 1: Without
using the locality
model.

 Case 2: 1 thread

 Case 3: 8 threads

 Case 4: 439
threads

12



Results 2

 Execution sites dynamically created when
load in the existing ES reaches N threads

13



Conclusion

 Locality model has been proposed which

 Groups together threads and objects in
execution sites.

 Execution sites can be allocated statically or
dynamically.

 System architecture is visible to the
application.

 Experiments show considerable better
performance.

14



Future Work

 Tests based on real-time applications.

 Constrains on higher priority real-time
threads to execution sites.

 Locality for method area.

 Extensions

 execution of multiple RTJVMs

 heterogeneous systems

15


