
1

A Locality Model for the
Real-Time Specification
for Java

Abdul Haseeb Malik

Andy Wellings

Yang Chang



Introduction

 Shift to multiprocessors

 UMA SMPs
 Single address space

 Cache coherence

 Uniform memory access

 NUMA systems
 Single address space

 Global or partial cache
coherence

 Non-uniform memory
access

2

Processor Processor Processor Processor

Memory

Memory 0

Processor
0

Memory 1

Processor
1

Memory 2

Processor
2

Memory 3

Processor
3



Problem

 Java applications experience unpredictable
delays due to a large number of remote
accesses.

 Remote accesses take considerably longer
than local accesses.

 The application cannot differentiate between
local and remote accesses because
 NUMA architecture is hidden from the application.

 Operating system manages allocation policies.

 Application is unaware of these allocation policies.

3



Related Work

 High performance computing e.g.
X10, Fortress, Chapel etc.

 Representation of the architecture.

 Grouping of tasks and objects.

 Programmers can explicitly allocate
objects on specific memory areas.

4



Existing Support

1. AffinitySet class

 Threads can be allocated on specific
processors.

2. Physical memory framework

 Can be used to create physical memory
areas on specific nodes.

 Both can be used to allocate threads
and objects individually on desired
nodes.

5



The Locality Model

 Introduces new abstractions which

 Provide visibility into the system architecture.

 Threads and objects grouped together.

 Groups allocated
 Statically by the programmer

 Dynamically at runtime

6



The Locality Model

 Locations: collection of processors, memory
banks and devices.
 Locale: logical representation of SMP.

 Neighbourhood: logical representation of cc-NUMA
 RTJVMs mapped on neighbourhoods.

 District: logical representation of NUMA.

 Execution site(ES): capable of executing an RTSJ
program.

7



Execution Site

 Execution site created for
more predictable
behaviour.

 Has a heap, immortal
memory and backing store
for scoped memory areas.

 Factory methods to create
threads.

 Factory methods to create
scoped memory areas.

8



Creation and Mapping
of Execution Sites

 Factory methods in the neighbourhood class

 Static mapping
 forced by the input of the programmer.

 application is not portable.

 Dynamic mapping
 based on reservations.

 resource requirements requested for each execution
site in the form of reservation parameters.

 mapped by the runtime based on the requirements
of the execution site.

9



Prototype

 Prototype based on jRate
over linux.

 Extensions made to the
jRate runtime library.
 memory areas in ES created

using the NUMA API.

 threads created inherit cpu
affinity of the execution site.

 16 processor cc-NUMA system
based on AMD opteron.

10



Experiment: Sieve of
Eratosthenes

11

 Highly parallel algorithm
 1 thread for each prime number.

 For all prime numbers< 15000 ~ 1754 threads.

 Experiment will measure execution times for
these 1754 threads using the locality model.



Results

 In cases 2-4, 4
execution sites
created

 Case 1: Without
using the locality
model.

 Case 2: 1 thread

 Case 3: 8 threads

 Case 4: 439
threads

12



Results 2

 Execution sites dynamically created when
load in the existing ES reaches N threads

13



Conclusion

 Locality model has been proposed which

 Groups together threads and objects in
execution sites.

 Execution sites can be allocated statically or
dynamically.

 System architecture is visible to the
application.

 Experiments show considerable better
performance.

14



Future Work

 Tests based on real-time applications.

 Constrains on higher priority real-time
threads to execution sites.

 Locality for method area.

 Extensions

 execution of multiple RTJVMs

 heterogeneous systems

15


