£/ atego

Ada-Java Middleware for Legacy
Software Modernization

u u
Kelvin Nilsen
© 2010 Atego. All rights reserved.

Aegis Software Modernization Uses Soft Real-Time Java
Based on PERC Ultra

What's a Java .
VM and why did } ~

it replace me?

It doesn'’t eat, it
doesn’t sleep, and
it doesn’t stink up
the Command
Intelligence Center.

Picture courtesy Lockheed Martin.
“Voice over” courtesy of Atego.

.. A [

USS Bunker Hill (CG 52) was first of 22 Ticonderoga-class guided-missile
cruisers to undergo extensive capability upgrade as part of Cruiser
Modernization Program

£7 afego

Context and Motivation for “Ada Java Method Invocation”

m Billions of dollars of software IP implemented in Ada: energy,
transportation, aerospace, defense

B Many companies are shifting attention to Java for new development

B The transition to Java is easier if the value of existing Ada IP can be
preserved

d AJMI enables Ada and Java to be efficiently and robustly combined in
mixed-language applications

O Majority of existing Ada software based on Ada 83 and Ada 95
standards

O Minimize certification disruption by building AJMI on Ada 95 run time
environment

L7 afego

Alternative Approaches (Related Work)

m Roll your own interface with Ada < C < JNI < Java
d Cumbersome, error prone, expensive to maintain

 Allows C (Ada) to manipulate Java data but does not directly allow Java
to access C (Ada) data.

B GNAT Ada Java Interface Suite (AJIS)
O Automatically generates Java wrappers for Ada specifications

 Java programmers can extend the auto-generated Java wrapper and an
Ada proxy can represent this extended Java object

O But GNAT AJIS does not generate Ada wrappers for Java classes

0 GNAT AJIS programs are vulnerable to memory leaks and inter-
language dangling pointers

O Relies on heap memory management and Ada 2005 features

[afego

AJMI Capabilities

B Auto-generates Ada wrappers for Java and Java wrappers for Ada

B Enables mixed-language object orientation
O Ada tagged types may override Java
O Java may override Ada tagged types

B Compatible with Ada 95 and Ada 2005 run times, Ada 83/95/05
source

B Compatible with standard edition and safety-critical Java

m Different middleware implementations enable Java and Ada to
reside in shared memory of same process, in isolated partitions of
ARINC 653 or MILS OS or Linux, on different networked processors

m Resirictive AUMI subset enablea reliable integration of JSSR-302-
style Java with Ravenscar-style Ada in stack memory /7 atego

S 5

AJMI interface generation tools: ava

Java class
definition(s)
(APl allows Java
application to

3 invoke Ada
ava > services, and
maps invocations
fo ajmi
communication
infrastructure)

Ada package
specification

£7 afego

AJMI interface generation tools: jada

Ada package
specification
(allows Ada
application to
invoke Java

/ services)

Javaclass ——> |ada

Ada package

body
(maps invocations
fo ajmi
communication
infrastructure)

L7 afego

AJMI Execution model

Java proxies for
Ada objects
(courtesy of ava)

Ada
Application

Java
Application

|

AJMI
Middleware

Ada proxies for
Java objects
(courtesy of jada)

Sample mixed-language application (Java perspective)

public class JavaMain {

public static void main(String[] args) {
UARTDriver uart = new UARTDriver(iocallback); // create an Ada object: UARTDriver is Java Proxy
JavaGUIListener listener = new JavaGUIListener();
JavaMonitorGUI gui = new JavaMonitorGUI(listener);
DeviceMonitor monitor = new DeviceMonitor(gui); // create an Ada object : DeviceMonitor is JavaProxy
JavaApplication app = new JavaApplication(uart);

I JavalOCallback is a Java extension of an ava-generated Java proxy
JavalOCallback iocallback1 = new JavalOCallback(app, JavalOCallback.INPUT_AVAILABLE);
JavalOCallback iocallback2 = new JavalOCallback(app, JavalOCallback.OUTPUT_READY);

app.doWork(); Il spawns a Java background thread
Il ask Ada to call back to my Java code under certain circumstances
uart.notifyWheninputAvailable(iocallback1); Il invoke Ada service
uart.notifyWhenOutqueueEmpty(iocallback2); I invoke Ada service
monitor.monitorUART(uart, 1000, gui); Il invoke Ada and do not return

L7 atego

Memory organization overview

Java and Ada have very different “temporary memory” models
O Ada allocates on the stack. Strong typing assures absence of dangling pointers.

O Java allocates on the heap. Garbage collection assures absence of dangling
pointers.

The mixed-language programming model allows each language to allocate
in its own style.

By default, shared objects have a stack-oriented life time:

O Java objects may live longer than an “interaction”, but proxies are “disabled” at
the moment when stack memory would normally be reclaimed

Optional (lower integrity) protocols are available to deal with objects that live
longer than a particular “interaction”.

O These protocols would be discouraged in safety-critical integrations

— £7 afego

Thread organization overview

B In Java, thread identity is important because a Java thread that “locks” a
Java resource is allowed to “relock” the same resource without restriction

m If Java calls Ada and Ada calls back to Java, the call-back into Java needs
to be the same Java thread

B Model: an Ada task melds with a Java thread to become a conceptual AJMI
thread

Q

Q

Implementations may optimize certain scenarios by allowing the Ada task and
Java thread to run as a single operating system thread

Memory allocations sometimes need to be taken from the stack frame of the
companion language’s run-time environment at the point of the most recent AJMI

invocation. Examples follow.

L7 atego

11

Thread stack usage: Ada invokes Java method

ajmi _
invocation

Ada Thread Stack

Ada Application
Stack

ajmi frame for
infrastructure

Java Thread Stack

-

ami

>

communication

12

ajmi frame for
infrastructure

stack frame
forinvoked
service

L7 afego

Thread stack usage: Java calls back to Ada

ajmi _
invocation

Ada Thread Stack

Ada Application
Stack

-

ajmi frame for
infrastructure

ajmi frame for
infrastructure

stack frame
forinvoked
service

ami 1

Java Thread Stack

ajmi frame for
infrastructure

stack frame
forinvoked
service

ajmi frame for
infrastructure

communication

13

ajmi
invocation

4 atego

Thread stack usage: invoked Ada stack allocates Java object

Ada Thread Stack Java Thread Stack
" ajmi frame for
Ada Application| < i*fra structure
Sta ck 2 Wiy
3 dack frame |
' forinvoked _q:
ajmi frame for = senice E
infrastructure =
— ajmi frame for
ajmi frame for infrastructure
infrastructure > .
e proxied object extenflonlozf
o imi ajmi leve
forinvoked E (ami frame))
serice E'
allocate —pt—— — =
ajmi frame for
Adaproxy infrastructure
-
ami
communication

14

Status

B Detailed design has been completed but the technology is not yet fully
implemented

O This design is much more ambitious than existing technologies
0 Represents Java objects in a style that is natural to the Ada 95 environment
O Represents Ada 83/95/05 objects in a style familiar to Java programmers

O Supports reliable and efficient inter-language sharing of stack-allocated objects

B An initial implementation integrates Object Ada 95 with PERC Ultra in
shared memory as a single Linux x86 process

O Support for other Ada, Java, processors, operating systems and middleware
configurations will be prioritized according to customer demand

B Performance measurements and user experiences with the initial
implementation may result in changes to the API design, the AJMI run time,
and the AJMI tool chains

£7 afego

15

