
Ada-Java Middleware for Legacy
Software Modernization

Kelvin Nilsen

1© 2010 Atego. All rights reserved.© 2010 Atego. All rights reserved.

Aegis Software Modernization Uses Soft Real-Time Java
Based on PERC Ultra

What’s a Java

VM and why did

it replace me?

It doesn’t eat, itIt doesn t eat, it

doesn’t sleep, and

it doesn’t stink up

the Command

Intelligence Center.
Picture courtesy Lockheed Martin

USS Bunker Hill (CG 52) was first of 22 Ticonderoga-class guided-missile

Picture courtesy Lockheed Martin.

“Voice over” courtesy of Atego.

2© 2010 Atego. All rights reserved.

() g g

cruisers to undergo extensive capability upgrade as part of Cruiser
Modernization Program

Context and Motivation for “Ada Java Method Invocation”

> Billions of dollars of software IP implemented in Ada: energy,

transportation, aerospace, defense

> Many companies are shifting attention to Java for new development

> The transition to Java is easier if the value of existing Ada IP can be g

preserved

̌ AJMI enables Ada and Java to be efficiently and robustly combined in

mixed-language applications

̌ Majority of existing Ada software based on Ada 83 and Ada 95

standards

̌ Minimize certification disruption by building AJMI on Ada 95 run time

environment

3© 2010 Atego. All rights reserved.

Alternative Approaches (Related Work)

> Roll your own interface with Ada ⇔ C ⇔ JNI ⇔ Java

̌ Cumbersome, error prone, expensive to maintain

̌ Allows C (Ada) to manipulate Java data but does not directly allow Java

to access C (Ada) data.

> GNAT Ada Java Interface Suite (AJIS)> GNAT Ada Java Interface Suite (AJIS)

̌ Automatically generates Java wrappers for Ada specifications

̌ Java programmers can extend the auto generated Java wrapper and aň Java programmers can extend the auto-generated Java wrapper and an

Ada proxy can represent this extended Java object

̌ But GNAT AJIS does not generate Ada wrappers for Java classes

̌ GNAT AJIS programs are vulnerable to memory leaks and inter-

language dangling pointers

4© 2010 Atego. All rights reserved.

̌ Relies on heap memory management and Ada 2005 features

AJMI Capabilities

> Auto-generates Ada wrappers for Java and Java wrappers for Ada

> Enables mixed-language object orientation> Enables mixed language object orientation

̌ Ada tagged types may override Java

̌ Java may override Ada tagged typesy gg yp

> Compatible with Ada 95 and Ada 2005 run times, Ada 83/95/05

source

> Compatible with standard edition and safety-critical Java

> Different middleware implementations enable Java and Ada to

reside in shared memory of same process, in isolated partitions of

ARINC 653 or MILS OS or Linux, on different networked processors

5© 2010 Atego. All rights reserved.

> Restrictive AJMI subset enablea reliable integration of JSR-302-

style Java with Ravenscar-style Ada in stack memory

AJMI interface generation tools: ava

Java class

definition(s)
(API allows Java

application to

ava

application to

invoke Ada

services, and

maps invocations

Ada package

specification
p

to ajmi

communication

infrastructure)

6© 2010 Atego. All rights reserved.

AJMI interface generation tools: jada

Ada package

ifi tispecification
(allows Ada

application to

invoke Java

jadaJava class

invoke Java

services)

j
Ada package

body
(maps invocations(p

to ajmi

communication

infrastructure)

7© 2010 Atego. All rights reserved.

AJMI Execution model

Java proxies for

Ada objects
(courtesy of ava)Java Ada
(courtesy of ava)

Application Application

AJMI

Middleware

Ada proxies for

Java objects

8© 2010 Atego. All rights reserved.

Java objects
(courtesy of jada)

Sample mixed-language application (Java perspective)

public class JavaMain {

public static void main(String[] args) {

UARTDriver uart = new UARTDriver(iocallback); // create an Ada object: UARTDriver is Java Proxy

JavaGUIListener listener = new JavaGUIListener();

JavaMonitorGUI gui = new JavaMonitorGUI(listener);

DeviceMonitor monitor = new DeviceMonitor(gui); // create an Ada object : DeviceMonitor is JavaProxy

JavaApplication app = new JavaApplication(uart);

// JavaIOCallback is a Java extension of an ava-generated Java proxy

J IOC llb k i llb k1 J IOC llb k(J IOC llb k INPUT AVAILABLE)JavaIOCallback iocallback1 = new JavaIOCallback(app, JavaIOCallback.INPUT_AVAILABLE);

JavaIOCallback iocallback2 = new JavaIOCallback(app, JavaIOCallback.OUTPUT_READY);

app.doWork(); // spawns a Java background thread

// ask Ada to call back to my Java code under certain circumstances// ask Ada to call back to my Java code under certain circumstances

uart.notifyWhenInputAvailable(iocallback1); // invoke Ada service

uart.notifyWhenOutqueueEmpty(iocallback2); // invoke Ada service

monitor.monitorUART(uart, 1000, gui); // invoke Ada and do not return

}

9© 2010 Atego. All rights reserved.

}

}

Memory organization overview

> Java and Ada have very different “temporary memory” models

̌ Ada allocates on the stack. Strong typing assures absence of dangling pointers.

̌ Java allocates on the heap. Garbage collection assures absence of dangling

pointers.

Th i d l i d l ll h l t ll t> The mixed-language programming model allows each language to allocate

in its own style.

> By default, shared objects have a stack-oriented life time: y j

̌ Java objects may live longer than an “interaction”, but proxies are “disabled” at

the moment when stack memory would normally be reclaimed

O ti l (l i t it) t l il bl t d l ith bj t th t li> Optional (lower integrity) protocols are available to deal with objects that live

longer than a particular “interaction”.

̌ These protocols would be discouraged in safety-critical integrations

10© 2010 Atego. All rights reserved.

Thread organization overview

> In Java, thread identity is important because a Java thread that “locks” a

Java resource is allowed to “relock” the same resource without restriction

> If Java calls Ada and Ada calls back to Java, the call-back into Java needs

to be the same Java thread

M d l Ad t k ld ith J th d t b t l AJMI> Model: an Ada task melds with a Java thread to become a conceptual AJMI

thread

̌ Implementations may optimize certain scenarios by allowing the Ada task and

Java thread to run as a single operating system thread

̌ Memory allocations sometimes need to be taken from the stack frame of the

companion language’s run-time environment at the point of the most recent AJMI

invocation. Examples follow.

11© 2010 Atego. All rights reserved.

Thread stack usage: Ada invokes Java method

Ada Thread Stack Java Thread Stack

Ada Applicat ion
St k

ajmi frame for
infrastructure

Stack

ajmi
invocation ajmi frame for

infrastructure

stack frame
for invoked

service

infrastructure
ajmi

communication

12© 2010 Atego. All rights reserved.

Thread stack usage: Java calls back to Ada

Ada Thread Stack Java Thread Stack

Ada Applicat ion
Stack

ajmi frame for
infrastructure

t k f
ajmi

invocation ajmi frame for
infrastructure

stack frame
for invoked

service

ajmi frame for

ajmi

invocation

ajmi

communication

j
infrastructureajmi frame for

infrastructure

stack frame
for invoked

service

13© 2010 Atego. All rights reserved.

Thread stack usage: invoked Ada stack allocates Java object

Ada Applicat ion

Ada Thread Stack

ajmi frame for

Java Thread Stack

Ada Applicat ion
Stack

ajmi frame for
infrastructure

j
infrastructure

stack frame
for invoked

service

a
jm

i
le

v
el

 0

jm
i

le
v

el
 1

infrastructure
ajmi frame for
infrastructureajmi frame for

infrastructure

stack frame
f i k d

a
j

v
el

 2 proxied object
(ajmi frame)

extension of
ajmi level 2

for invoked
service

a
jm

i
le

v

ajmi frame for
infrastructure

allocate

Ada proxy

(j)

ajmi

communication

14© 2010 Atego. All rights reserved.

Status

> Detailed design has been completed but the technology is not yet fully

implemented

̌ This design is much more ambitious than existing technologies

̌ Represents Java objects in a style that is natural to the Ada 95 environment

̌ R t Ad 83/95/05 bj t i t l f ili t J̌ Represents Ada 83/95/05 objects in a style familiar to Java programmers

̌ Supports reliable and efficient inter-language sharing of stack-allocated objects

> An initial implementation integrates Object Ada 95 with PERC Ultra in> An initial implementation integrates Object Ada 95 with PERC Ultra in

shared memory as a single Linux x86 process

̌ Support for other Ada, Java, processors, operating systems and middleware

configurations will be prioritized according to customer demandconfigurations will be prioritized according to customer demand

> Performance measurements and user experiences with the initial

implementation may result in changes to the API design, the AJMI run time,

15© 2010 Atego. All rights reserved.

and the AJMI tool chains

