
Java in Space?

Marek Prochazka
European Space Agency

JTRES 2010

OUTLINE

– About me

– About ESA

– About spacecraft flight software (FSW)

– On-Board Control Procedures (OBCP)

– Java in Space?

– What has ESA done

– What is ESA after

– Conclusions

BRIEFLY ABOUT ME

– MSc in Prague in 1997

– PhD in Prague in 2002

– Distributed systems, Software architecture, Components, Distributed transactions

– Between 1994 and 1999 worked on real-time projects in industry

– 2m Telescope control system for Czech Acedemy of Sciences observatory

– In 2002 moved to INRIA Grenoble, France (French National Institute for Research in Computer Science and
Control)

– Component architectures (Fractal), Middleware (ObjectWeb), Service-Oriented Architecture

– In 2003 moved to Purdue University

– Real-Time Java (Ovm)

– Benchmarking

– Application development for Boeing ScanEagle UAV (funded by DARPA)

– In 2005 moved to industry in United Kingdom

– Spacecraft flight software (FSW)

– R&D projects (FSW reference architecture, reuse, RT Java, CORBA, fault-tolerance, time and
space partitioning, communication protocols)

– Consultancy for space missions (computational model, schedulability analysis, HW-SW interaction
analysis)

– In 2009 moved to ESA (ESTEC, Netherlands)

– Support for space missions (technical reviews – EarthCARE, Sentinel-2, Sentinel-1, SGEO)

– R&D activities (V&V, automatic testing, on-board control procedures, RT Java)

“To provide for and promote, for exclusively peaceful
purposes, cooperation among European states in space

research and technology and their space applications.”

- Article 2 of
ESA Convention

BRIEF OVERVIEW OF ESA

– Over 30 years of experience

– 18 Member States

– Five establishments, about 2000 staff

– 3.7 billion Euro budget (2010)

– Over 60 satellites & landers designed,
tested and operated in flight

– 17 scientific satellites in operation

– Five types of launchers developed
– Over 190 launches

ESA FACTS AND FIGURES

– Space science
– Human spaceflight
– Exploration
– Earth observation
– Launchers

About 90% of ESA’s budget is spent on contracts with European
industry

ACTIVITIES

– Navigation
– Telecommunications
– Technology
– Operations

Houston

Washington

Kourou

Moscow

ESA sites/facilities

Offices

ESTEC
(Noordwijk)

Brussels
ESA HQ
(Paris)

Toulouse

ESAC
(Madrid) ESRIN

(Rome)

EAC
(Cologne)

ESOC
(Darmstadt)

ESA’S LOCATIONS

Harwell

Redu

Salmijaervi
(Kiruna)

ESA ground stations

New Norcia

Santa Maria

Cebreros
(Villafranca)

Oberpfaffenhofen

Maspalomas

Perth
Malargüe

• Hipparcos – most comprehensive
star-mapper (1989–93)

• IUE – longest-living orbiting
observatory (1978–96)

• Giotto – closest ever flyby of a
comet nucleus (1986)

• Ulysses – first spacecraft to fly over
Sun’s poles (1990–2008)

ESA’S REMARKABLE PIONEERS OF SCIENCE

HUYGENS

In 2005, ESA’s Huygens probe
made the most distant landing
ever, on Titan, the largest moon
of Saturn (about 1 427 million km
from the Sun)

First landing on a world in
the outer Solar System

– Mars Express (2003–) studying Mars, its moons
and atmosphere from orbit

– Venus Express (2005–) studying Venus and its
atmosphere from orbit

– Herschel (2009–) far-infrared and submillimetre
wavelength observatory

– Planck (2009–) studying relic radiation from the
Big Bang

– The detectors will look for variations in the
temperature close to 10-6 °C – this is
comparable to measuring from Earth the heat
produced by a rabbit sitting on the Moon

– Cooling to near absolute zero using 2000 litres
liquid helium (0.3 K)

TODAY’S ESA SCIENCE MISSIONS

TODAY’S ESA SCIENCE MISSIONS

– Planning and construction of the GOCE spacecraft
involved 45 European companies led by Thales Alenia
Space

– Precision of measurements:

– The six accelerometers (three pairs in three
orthogonal directions) are some 100 times more
sensitive than any previously flown in space

– Flies at altitude only 263km

– Air friction is enough to drag GOCE out of
orbit

– “Imagine a snowflake, which has a fraction of
a gram, slowly falling down on to the deck of
a supertanker. The acceleration that the
supertanker experiences from that snowflake
is comparable to the sensitivity of the GOCE
instrument”

2009: GOCE
(Gravity field and steady-state Ocean Circulation Explorer)

TODAY’S ESA SCIENCE MISSIONS

– Launch 2 March 2004

– First Earth swing-by 4 March 2005

– Mars swing-by 25 February 2007

– Second Earth swing-by 13 November 2007

– Steins fly-by 5 September 2008

– Third Earth swing-by 13 November 2009

– Lutetia asteroid fly-by 10 July 2010

– Comet rendezvous manoeuvres 22 May 2014

– Lander delivery 10 November 2014

– Escorting the comet around the Sun November 2014 -
December 2015

– Challenges

– Poor communication bandwidth

– Solar panels used near Jupiter’s orbit

– Accurate pointing

– Autonomy

Rosetta: Landing on a comet

UPCOMING ESA MISSIONS

– Gaia – mapping a billion stars in our galaxy
(2012)

– BepiColombo – a satellite duo exploring
Mercury (2014)

– Facing extreme heat and radiation

– Temperature of Mercury's surface can
reach up to 470°C, reflects solar
radiation and emits thermal infrared
radiation

LISA (Laser Interferometer Space Antenna)

– together with NASA, launch 2018

– Three identical spacecrafts, each carrying two
telescopes with associated lasers and optical
systems that together act as an interferometer

– The three spacecraft fly in a near-equilateral
triangular formation separated from each other
by 5 million kilometres. Together they trail
behind the Earth at a distance of 50 million km in
the planet's orbit around the Sun

– There the relative movement of two
spacecrafts located 5 million kilometres
apart will be measured to an accuracy of 10
picometres

– Proposed in 1993, project prepared in 2004

UPCOMING ESA MISSIONS

SCIENCE MISSIONS: COSMIC VISION

– ESA is assessing
challenging new
missions, including

– probes to the moons of
Jupiter and Saturn, for
2015–25

– The first two medium-
class missions to be
launched in 2017 and
2018

ESA’s long-term scientific programme is based on a vision. The
‘Cosmic Vision’ looks for answers to mankind's fundamental
questions:

• How did we get from the 'Big Bang' to where we are now?

• Where did life come from, and are we alone?

ExoMars will investigate
the martian environment,
particularly astro-biological
issues, and develop and
demonstrate new
technologies for planetary
exploration with the long-
term view of a future
Mars sample return
mission in the 2020s

ROBOTIC EXPLORATION

ISS

– USA, Russia, Japan, Canada and
Europe

– Europe’s two key contributions are

– The Columbus laboratory

– Automated Transfer Vehicle
(ATV)

– Cupola

– Nodes 2 & 3

European astronaut corps

HUMAN SPACEFLIGHT

– Part of ESA’s ‘Living Planet’ Programme

– GOCE (2009) studying Earth’s gravity field

– SMOS (2009) studying Earth’s water cycle

– CryoSat-2 (2010) studying Earth’s ice cover

– The next missions are:

– ADM-Aeolus – studying the
atmosphere

– Swarm – three satellites to study
Earth’s magnetic field

– EarthCARE – an ESA/JAXA mission to
study Earth’s clouds, aerosols and
radiation

– Global Monitoring for the Environment
and Security (GMES)

– ESA has started a Climate Change
Initiative, for storage, production and
assessment of essential climate data

EARTH EXPLORERS

‘Living Planet’ also includes the next generation
of missions dedicated to weather and climate.

Meteosat Third Generation – taking over
from Meteosat 11 in 2015, the last of four
Meteosat Second Generation (MSG) satellites.
MSG is a joint project between ESA and
Eumetsat.

MetOp – a series of three satellites to monitor
climate and improve weather forecasting, the
space segment of Eumetsat's Polar System
(EPS).

MetOp-A – Europe’s first polar-orbiting satellite

dedicated to operational meteorology (2006).

METEOROLOGICAL MISSIONS

GALILEO: SATELLITE NAVIGATION

Putting Europe at the forefront of this
strategically and economically important sector,
Galileo will provide a highly accurate,
guaranteed global positioning service under
civilian control.

The full Galileo system will consist of 30 satellites
and the associated ground infrastructure. Galileo
is a joint initiative between ESA and the
European Commission.

GIOVE-A - first Galileo test satellite, 2005

GIOVE-B - launched in 2008, successfully

validated the technologies

Galileo IOV - first In-orbit Validation satellites
due in 2011

FOC - Full Operational Capability satellites,
expected 2012

The launchers developed by ESA
guarantee European access to
space. Their development is an
example of how space challenges
European industry and provides
precious expertise.

Ariane is one of the most successful
launcher series in the world, soon to
be complemented by Vega and
Soyuz, launched from the European
Spaceport in French Guiana.

THE EUROPEAN LAUNCHER FAMILY

SPACE SITUATIONAL AWARENESS

Space Situational Awareness (SSA) initiative

– Aims to provide Europe and its citizens with
accurate information about objects orbiting
Earth, the space environment and threats,
such as asteroids

– The SSA system will also tell us more about
‘space weather’ (solar activity affecting
satellites and ground infrastructure)

– It will identify and assess asteroids and
comets, known as Near-Earth Objects
(NEOs), that pose a potential risk of collision
with Earth

SPACECRAFT FLIGHT SOFTWARE

SYSTEM COMPLEXITY (I)

– Commands: 10

– Parameters: 0

– Commands: 25

– Parameters: 100

– Commands: 100

– Parameters: 1.000

– Commands: 5.000

– Parameters: 30.000

SYSTEM COMPLEXITY (II)

Driven by complex system requirements

– Rosetta mission

– Precise pointing

– Lifetime > 10 years

– Extreme temperatures

– Limited communication bandwidth (autonomy)

– Complex trajectory (swing-bys, rendezvous with two asteroids and a comet)

– Delivering a lander, performing science on the comet and delivering data
back to Earth

– LISA mission

– The relative movement of two spacecrafts located 5 million kilometres apart
will be measured to an accuracy of 10 picometres

SYSTEM COMPLEXITY (III)

Spacecraft flight software is fairly complex

Typical characteristics

– Reliability

– Safety

– Autonomy

– Failure recovery

– Time-critical

– No test flight

– No offline maintenance

– Hostile environment (single event upsets, etc.)

– Very long time between project definition and its implementation
(4-10 years)

THE IMPORTANCE OF FLIGHT SOFTWARE

– Software handles system complexity

– Flight software implements critical space system requirements

– Mission and vehicle management (Spacecraft Mode and Mission
Management, Failure Detection Isolation & Recovery)

– Management of vital subsystems (e.g. AOCS, power and thermal
control)

– Acquisition, processing and distribution of payload data

– Increasingly complex missions require on-board autonomy provided by
software

– Software is the only part of the spacecraft which can be modified
after launch!

– Software has no mass, no substantial thermal or power requirements

CRITICAL ASPECTS OF SOFTWARE DESIGN

– Most space programmes experience significant development problems of
flight software

– Software development schedules are often on the critical path

– Worldwide major failures in space programmes have been attributed to bad
engineering and verification of software, e.g.

– Ariane 501 (1996)

– SOHO (1998)

– Mars Climate Orbiter (1999)

– Mars Polar Lander (1999)

– Titan IV B-32/Centaur TC-14/Milstar-3 (1999)

– The software complexity, size and verification are often severely
underestimated

– Consequently, software is frequently the cause of program delay
(or mission failure)

TYPICAL HW CONFIGURATION

– ERC32-SC with SUN SPARC V7

– Instruction set running at 20 MHz with 0 wait states on SRAM
memory (at least 14 Mips ATMEL benchmark)

– LEON2 with SUN SPARC V8

– 80 MHz

– Cache disabled

– Memory:

– 64 Kbytes PROM for the storage and execution of the boot software

– 4 Mbytes EEPROM for the storage of the application software
images

– 8 Mbytes SRAM for the execution of the application software

– 64 Kbytes SRAM buffer for 1553B bus controller and for HS serial
link controller(s) and interface with

– 256 bytes FIFO for buffering the received TC segments to be
processed by the ASW

TYPICAL SOFTWARE CONFIGURATION

– Preemptive systems or cyclic executives

– FSW written “completely” in C or Ada

– Yesterdays discussion on compare software engineering efforts
between C/Ada and Java

– Misra C, Ravenscar Ada

– “Budget analysis” mandatory for all projects

– Memory use

– Schedulability analysis

– CPU utilisation margin

– Independent Verification & Validation is mandatory on all projects

– Roughly 20-40 periodic & sporadic tasks, 100 Hz main cycle

SPACECRAFT OPERATIONS

– Being in contact with a spacecraft using a
sophisticated array of mission control
systems (mission control room, WAN
network, network of ground stations with
massive antennas)

– Monitoring

– Commanding

– Control of data processing (mission
product)

– Maintenance

– 24/7 service

– Reacting to unforeseen circumstances

– Sending sequences of telecommands
and analysing telemetry sent by the
spacecraft

OPERATOR ON-BOARD?

Having an operator on-board spacecraft would be more efficient

– Reduction of delay

– Reduction of bandwidth

– Enhance autonomy (no need of 24/7 operations support)

– Useful in situations of reduced spacecraft visibility

– In deep-space missions with long signal propagation delays

– In situations when a rapid reaction is needed

– Implementation of on-board solutions in view of unforeseen failures occurring
in orbit

– Adaptation to unpredictable environment

– End-of-life operations

ON-BOARD CONTROL PROCEDURES

OBCPs are flight control procedures that can be resident on-board or
that can be uploaded to the spacecraft as required by the ground

Key features:

– Often interpreted

– No fault propagates to FSW

– Isolated in time & space

– Could be uploaded to the spacecraft

OBCPs triggered the interest of the European space community in Java
in early 2000’s

ON-BOARD CONTROL PROCEDURES

How does it work?

OBCP EXAMPLE

Rosetta’s very last batch of activities for entry into the Deep Space Hibernation
Mode

Step P5: Switch off the SSMM

Step Commands Remarks

020 Stop MTL, TC(11,12)
030 Set SSMM off, TC(136,21)
040 Update GSUT: Set SSMM to ‘Not Used’ for PM1
041 Update GSUT: Set SSMM to ‘Not Used’ for PM2
042 Update GSUT: Set SSMM to ‘Not Used’ for PM3
043 Update GSUT: Set SSMM to ‘Not Used’ for PM4
050 Wait 12 sec
060 Set SSMM off, TC(136,21) TC is repeated to cope with possible

RTU reconfiguration during LCL
switching

OBCP EXAMPLE

Rosetta’s very last batch of activities for entry into the Deep Space Hibernation
Mode

Step P6: Verify that SSMM is off

Step Commands Expected
Value

Remarks

020 Wait 10 sec
050 IF (SSMM 1,LCL 7A STATUS = ON) OR

 (SSMM 2,LCL 7B STATUS = ON),
 THEN

060 Send the commands:
SSMM 1, LCL 7A OFF, PDU-S/S-A

070 SSMM 2, LCL 7B OFF, PDU-S/S-A
080 SSMM 1, LCL 7A OFF, PDU-S/S-B
090 SSMM 2 LCL 7B, OFF, PDU-S/S-B
100 Wait 10 sec
140 IF (SSMM 1,LCL 7A STATUS = ON) OR

 (SSMM 2,LCL 7B STATUS = ON),
 THEN

150 Event 4120 TM (5,3) Second check not ok
160 Send command ‘Go to Safe Mode’
170 End OBCP

 END IF

 END IF

OBCP EXAMPLE

Step Commands Remarks
010 Stop OBCP KSBF6455 tank heater LCLs re-cycling
020 Wait 5 sec
030 PROP TANK +Z HTR, LCL 35A OFF, PDU-P/L-A Tank heaters are switched off
040 PROP TANK +Z HTR, LCL 35A OFF, PDU-P/L-B to make power available for
050 PROP TANK -Z HTR, LCL 36A OFF, PDU-P/L-A downlink; this is allowed for a
060 PROP TANK -Z HTR, LCL 36A OFF, PDU-P/L-B total duration of 10h per day.
070 TX B, LCL 2B ON, PDU-S/S-A
080 TX B, LCL 2B ON, PDU-S/S-B
090 TRSP-2, S-TX ON, RTU-S/S-A only carrier is activated
100 TRSP-2, S-TX ON, RTU-S/S-B
105 Wait 12 sec
110-
117

Repeat the above command sequence from step
030-100 onwards once

120 Wait 10 sec
130 IF (TRSP-2 S-RF OUTPWR 50dec) OR

 (TRSP-2 S-RF OUTPWR 200dec)THEN
 200dec or 50dec (raw val-
ues!) equals to 1V and 4 V
(as go/nogo criterium)

140 event 4563 (5,3) TRSP 2 downlink failed;
TRSP 1 will be used

145 continue with Step P8
 END IF
150 Wait 5 hours
160 TRSP-2, S-TX OFF, RTU-S/S-A
170 TRSP-2, S-TX OFF, RTU-S/S-B
180 TX B, LCL 2B OFF, PDU-S/S-A
190 TX B, LCL 2B OFF, PDU-S/S-B
200 PROP TANK +Z HTR, LCL 35A ON, PDU-P/L-A
210 PROP TANK +Z HTR, LCL 35A ON, PDU-P/L-B
220 PROP TANK -Z HTR, LCL 36A ON, PDU-P/L-A
230 PROP TANK -Z HTR, LCL 36A ON, PDU-P/L-B
240 Wait 12 sec
250-
320

Repeat the above command sequence from step
160-230 onwards once

330 Start OBCP KSBF6455 tank heater LCLs re-cycling
340 Wait 7 hours
350 Continue with Step P7, Sub-step 010 infinite loop

Step P7: Cycle TRSP-2 MGA S-Band Carrier Downlink, 5 hours on / 7 hours off

THE OBCP CONCEPT

ECSS-E-ST-70-01C (April 2010)

OBCP system includes:

– OBCP system capabilities

– Language

– Preparation environment

– Execution environment

– OBCP engineering process

– Lifecycle of development and V&V

OBCP DOMAINS OF APPLICATION (I)

Spacecraft Operations
– Streamline: Reduction of bandwidth, delay
– Enhance autonomy
– Implementation of on-board solutions in view of unforeseen failures occurring in orbit
– Adaptation to unpredictable environment
– End-of-life operations

System design
– Platform functions

– To isolate mission-specific platform functions of FSW
– To implement one-shot applications deleted after use
– To accommodate late specification of detailed FDIR
– To accommodate late delivery/removal/addition/replacement of equipment
– Fine tuning configuration sequences without having to modify FSW

– Payload functions
– To accommodate late definition and tuning of complex configuration

sequences and monitoring/recovery actions

OBCP DOMAINS OF APPLICATION (II)

FSW design and development
– Ease of development and validation
– FSW generic, mission-specific functions in OBCP
– Easier maintenance
– Automation of tests
– Debugging
– Short-term workaround solutions

Assembly, Integration and Testing (AIT)
– Fault injection and robustness testing
– Long and complex configuration sequences
– Temporary functions for testing purposes

TYPES OF OBCP

OBOP: On-board Operation Procedures
– To operate spacecraft
– Not involved in S/C qualification

OBAP: On-board Application Procedures
– Part of the spacecraft functionality
– Qualification together with FSW

There are major differences how OBAP/OBOP are treated
– Scheduling
– Resource allocation
– Accessible services

OBCP SYSTEM

Preparation environment
– Editor
– Static checking (constraints, consistency)
– Configuration
– Compilation
– Validation

Execution environment
– Ground

– Control: Uplinking, Monitoring
– Visualisation
– Constraint and consistency checking

– On-board
– OBCP engine

– Monitoring and control (interfacing the ground)
– Interaction with FSW, platform and payloads
– Execution of OBCP
– Could be multiple of them, independent

– OBCP store
– Loading, garbage collecting – out of the scope of the standard

OBCP STRUCTURE

– Id

– Arguments

– Declarations (optional)

– Preconditions (optional)

– Main body

– Postcondition/confirmation (optional)

– Contingency handling body (optional)

OBCP LANGUAGE CAPABILITIES (I)

– Domain-specific language or generic programming language

– Data types
– ECSS-E-ST-70-31
– Structures and arrays
– Explicit type casting

– Declarations
– Variables of any data type
– Constants of any data type
– Local functions

– Expressions
– Assignment
– Math, time, string bitwise operations
– Constants, on-board parameters, activity arguments and variables
– Constants together with their engineering units

– Mix compatible units
– Automatic conversion of units
– On-board parameters by names and in engineering units and also raw

form
– Refer to events by their names

OBCP LANGUAGE CAPABILITIES (II)

– Flow control
– Branching simple and multiple conditional based on any parameter or

variable
– Repeated execution (for-loop, repeat-until, while-do)

– Waits
– Until a given OBT, or elapsed time
– Until a condition becomes true
– Until given event occurs
– Until an event from a list of events occurs
– Combination of conditions within wait statement
– Precondition/postcondition

– All waits + test a condition
– Timeouts for wait

– Should be possible to define
– Behaviour in case of exceeded timeout

OBCP LANGUAGE CAPABILITIES (III)

– External interactions

– Read/write on-board parameters

– Initiating activities

– Including reporting conditions, information on started
activities

– Both blocking and non-blocking (spawn or exec&wait)

– OBAP: Also execution of activities not accessible from the
ground (bus access)

– Raising and accessing events

– Contingency handling based on events/conditions

OBCP PREPARATION ENVIRONMENT
CAPABILITIES (I)

– Script preparation
– Editor, viewer, integrated with engineering database

– Static analysis
– Syntax, consistence with database
– Inter-OBCP dependencies
– Compliance to constraints (resources usage, max sampling rate)

– Could be different for OBOP and OBAP
– Could be different for different OBCP engines

– Report generation (For a single OBCP or a call tree)
– Referenced database objects, activities, parameters, events
– Resource consumption (CPU, memory, …)
– Prerequisites for execution
– Script quality measures

– V&V
– Debugging (step-by-step, step over, step out, breakpoints, etc.)
– Forcing an execution path
– Visualisation of internal and external data
– Stimulation of events
– Simulation of external interactions
– Flight-representative V&V environment (higher for OBAP than OBOP)
– Test coverage tools (branch, decision coverage…)

OBCP PREPARATION ENVIRONMENT
CAPABILITIES (II)

– OBCP characterisation

– Memory predictability

– Both static and dynamic (stack, persistence for OBCP
execution)

– Both mass memory and RAM

– Time predictability

– Observability

– Levels of observability

OBCP EXECUTION ENVIRONMENT
CAPABILITIES (I)

– Ground

– Checks (resources, inter-dependecies, state transitions)

– Uplink

– Management (PUS 18)

– Activate request allows to pass parameters

– Monitoring and control

OBCP EXECUTION ENVIRONMENT
CAPABILITIES (II)

– OBCP Integrity
– Checksum generated by translation process
– Checksum checked during load to engine
– Checksum on request

– On-board capabilities
– Predefined scheduling policy
– Static and dynamic memory allocation policy
– Garbage collection policy
– Observability of these by ground
– Engine services

– Process the language capabilities
– Global service for all OBCPs
– Defined behaviour in case of reset, discontinuity of time

(affects waits)
– Housekeeping information

– Loading policy
– OBCP stores
– Different types of memory
– Reprogrammable? – should be defined
– Persistency? – should be defined

OBCP EXECUTION ENVIRONMENT
CAPABILITIES (III)

– On-board capabilities (cont.)
– Process scheduling

– Should be defined
– Minimum allocation time per time intervals
– Several OBCPs “in parallel”
– OBAP and OBOP resource allocation is independent
– Max number of loaded and active OBOPs is defined
– OBOP resource allocation independent from concurrently executing

OBOPs (i.e. context does not change behaviour)
– OBAP resource allocation to concurrently executing OBAPs should be

defined (i.e. definition of priority scheme)
– Isolation of OBCPs

– Internal faults do not propagate to OBSW
– Maximum allocated resources never exceeds
– Loading, activation and control of an OBCP should not affect active

OBCPs
– How about higher-priority OBCP preempting a lower-priority

one?
– OBCPs are isolated – no fault propagation, no illegal memory access

OBCP EXECUTION ENVIRONMENT
CAPABILITIES (IV)

– On-board capabilities (cont.)

– Exception handling

– Internal errors detected and handled by OBCP or engine

– Internal errors reported to the ground

– Run-time error of error handler Termination of OBCP

– When condition to run OBCP(s) are not longer provided,
actions taken defined

– Contingency handlers establishing default state of
SW/HW

– All running OBCPs suspended

– Report to ground

– Continuity of service

– The concept should be defined

– Capability to define default OBCPs started at engine startup

TRADE-OFF ANALYSIS: OBOP VS. GROUND-
BASED OPERATIONS

OBOP pluses:
– Operations during phases of non-visibility or with long signal propagation
– Loss of ground control
– Reduce operator errors
– Synchronise with asynchronous elements (events)
– Coded and up-linked once, used many times
– Atomic operations (critical activities to be performed “at once”)
– Decrease the need for human availability

Ground-based operations pluses:
– Human response in unforeseen scenarios
– Decrease the complexity of FSW & validation

– Engineering effort required to develop and validated an ops
procedure is lower than to develop an OBOP

– Less effort to update a procedure
– Less complex configuration management

TRADE-OFF ANALYSIS: OBAP VS. FSW

OBAP pluses:
– Variability and flexibility (in case of mission reqs change)
– Late definition
– Maintenance

FSW pluses:
– RT
– Execution time
– Complex functions (engineering process, techniques)
– Core system with stable reqs. and close to subsystems (e.g. AOCS)
– Functionality for survival modes
– Generic functionality (e.g. PUS, reused subsystems)
– Subsystems to be available early in the lifecycle

OBCP IN CURRENT EXECUTION ENVIRONMENT

O
B

C
P

 E
ng

in
e

OBCP = Fault Containment + Dynamic Code Updates

OBCP IN PARTITIONED ENVIRONMENT

OBCP 1

TM/TCMessage
Transfer Service

Device
Enumeration

Service

Interpartition
Communication

I/O
 P

ar
tit

io
n

O
B

C
P

 P
ar

tit
io

n

Time Access
Service

SpaceWire Driver 1553 Driver

Packet Service Memory Access Service

OBCP Store
OBCP 2 OBCP 3

Upload Delete

BSW
RTOS Raw SpW/1553 Driver

BSP

Math
Library

OS
Library

TM/TC
Library

Time
Library

OBCP = Dynamic Code Updates

JAVA IN SPACE

WHY TALKING ABOUT OBCPs?

Adopting Java in space
– Incremental approach vs. “full FSW

implementation”
– Platform vs. payload vs. operations
– Mission-critical vs. mission-non-critical (or safety-

critical)
– Time-critical vs. non-time-critical

A new paradigm
- Scripting/Interpreter
- Temporal & spatial isolation
- Uploading new SW components and updating

existing ones at runtime
- Specific functionality (domain-specific language)

I have a dream…
- Shortening the spacecraft delivery by launching it

with core software + uploading mission-specific
software in flight

ESA PROJECTS TO EVALUATE RT JAVA (I)

AeroVM (JamaicaVM) by Aicas
- Two studies: 2003 and 2005-2007
- First

- Development of RTSJ 1.0 compliant VM
- Second

- Product assessment
- Evaluation of performance, predictability
- Suitability for FSW
- Integration into Software Validation facility with Ada 95 software

PERC by Aonix (now Atego)
– Two independent studies in 2007-2008
– Looking at both PERC Ultra (J2SE) and PERC Pico (~SCJ)
– Performance & predictability, FSW use case

OVM (Purdue University)
– In 2008 Hosting Purdue student to port & test OVM on ESA HW

MicroJava4Space by IS2T
– 2009 – 2010
– Porting to ESA HW, benchmarking, realistic space use case

BENCHMARK RESULTS (2008)

These are representative results (status in 2008)

No specific product to be referred to

AOT
– In some system latencies, up to 20 times slower than RTEMS/C, others close to factor

of 2
– In raw performance, in some tests comparable with RTEMS/C
– Footprint: ~ 600 KB – 2 MB overhead

Interpreter
– In system latencies up to 4 times slower than RTEMS/C
– In raw performance ~ 70 times slower than RTEMS/C
– Footprint: Up to 4 MB of overhead (depending on libraries available)

Have not tried JIT
- CPU power issues (impact on other processes)
- Memory size issues

PITFALLS OF PERFORMANCE ASSESSMENT

Possible causes of poor performance

– RTJava technology itself

– Product in test

– Specific port (for RTEMS/Leon in this case)

An example: Benchmarking on another platform

– E.g. Linux/x86 is available

– Results comparable

– More optimisations needed for the target platform

– Possibly missing gcc optimisations for SPARC?

RT JAVA PROGRAMMING MODEL ASSESSMENT

Memory management

– GC having too big pauses (order of milliseconds)

– Scope memory as in RTSJ is too cumbersome to use

– Proprietary methods are, …. well, proprietary

– Are annotations the right way forward?

Other RT Java features

- Static analysis tools are needed (instead of Runtime Exceptions)

Have not looked at SCJ

ESA PROJECTS TO EVALUATE RT JAVA (II)

Planned project for 2013-2014
The objective of this activity is to make full scale use of Java for development

of flight software for a realistic space mission and its validation on the SVF

Target TRL: 5
Goals (not necessarily all achieved in the scope of the planned activity)
– Achieve small memory footprint
– Achieve small system latency times
– Achieve reproducible real-time characteristics
– Achieve high execution throughput

– In some cases Java could be as fast as C, but it shall be studied in which
applications this is the case and which cases this is not currently achievable

– Access low level devices
– Either this or access to current Basic Software via a fast and safe access to

native code

ESA PROJECTS TO EVALUATE RT JAVA (III)

– Propose novel flight software design, techniques and processes in order to address
managing increasingly complex applications

– A programming model suitable for FSW and high-integrity systems shall be proposed.
JSR 302 profiles should be a first attempt to standardize this. The key issues are 1)
memory management, 2) mission phase management and 3) reuse of standard Java
libraries

– Benchmarking: A set of suitable benchmarks should be developed or adopted in order
to evaluate and compare existing implementations

– FSW in Java: A FSW test platform in Java should be incrementally consolidated based
on existing developments

– It must be considered whether Java is applicable to all subsystems e.g. for Basic
Software

– Until recently the norm was to use the C language for lower-level code such
as hardware drivers, and to interact with these using the Java Native
Interface (JNI)

– However, the JSR-302 standard could make Java suitable also for the low-
level code

USE OF JAVA in FSW SUBSYSTEMS (I)

USE OF JAVA in FSW SUBSYSTEMS (II)

BSW

– Legacy systems: always C

– Support in RT Java is missing (interaction with hardware)

– Using JNI or other means to access BSW written in C

– Performance penalty?

Data Handling

– Legacy systems: C/Ada

– Functionally appropriate

– Improvements in performance and predictability needed

AOCS

– Legacy systems: C/Ada

– Functionally appropriate (trigonometric functions?)

– Improvements in performance needed

USE OF JAVA in FSW SUBSYSTEMS (III)

OBCP

– Legacy systems: from simple TC sequencers to complex
scripts

– Functionally appropriate

– Dynamic classloading

– Time/Space partitioning needed (hypervisor?)

Payload SW

– Legacy systems: C/Ada

– No specific obstacles found

– Improvements in performance needed

CONCLUSIONS

– There is a need for modern programming languages and advanced V&V
techniques in space

– Java is a very good candidate, but challenges remain
– Suitable programming model (memory management, HW access)
– Fast and predictable garbage collecting
– Implementations

– Predictability, performance, reliability
– Incremental migration to Java is possible

– On-board Control Procedures (OBCP)
– Other appropriate subsystems

– Model-driven engineering & code generation
– Does the target programming language matter if the code generation tools

are qualified?
– Possible ideas of a new flight software paradigm

– Safe and transparent code uploading in flight
– Time & space partitioning

THANK YOU

Marek Prochazka
ESA Flight Software Systems
Marek.Prochazka@esa.int

