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Recall: Common OS TaxonomyRecall: Common OS Taxonomy

Special-purpose operating systems

Real-time operating systems

Hypervisors (type 1)

...

General-purpose operating systems

Monolithic kernel

Single-server microkernel

Multiserver microkernel

Hybrid kernel (?)
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Monolithic KernelMonolithic Kernel

hardware

monolithic kernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC

device
drivers

file system
drivers

user
mgmt

network
stack ...
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Some Obvious IssuesSome Obvious Issues

Security

Applications trust all kernel components

Kernel components trust all other kernel components

Reliability

Kernel components are a single point of failure

Availability

Kernel components cannot be updated independently

Justifiability

Who says file systems, networking, device drivers, etc. belong 
to the kernel?
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Some Obvious Issues (2)Some Obvious Issues (2)

Extensibility

How to extend the system without modifying the 
kernel

Too many communication mechanisms

Unix: pipes, files, shared memory, sockets, signals, System V 
IPC, System V shared memory, System V semaphores…

Kernel has many built-in policies

Software design principles

Interfaces between kernel components are usually 
implicit, not well-defined
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Single-server MicrokernelSingle-server Microkernel

hardware

microkernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC

system server
device
drivers

file system
drivers

user
mgmt

network
stack ...
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file system
driver server

Multiserver MicrokernelMultiserver Microkernel

hardware

microkernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC

naming
server

location
server

device driver
server

device driver
server

device driver
server

file system
driver server
file system

driver server

device
multiplexer

file system
multiplexer

network
stack

security
server

...
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ExamplesExamples

Monolithic kernel

Linux, Solaris (UTS), Windows, FreeBSD, NetBSD, 
OpenBSD, OpenVMS, MS-DOS, RISC OS

Microkernel (the microkernel on its own)

CMU Mach, GNU Mach, L4::Pistachio, Fiasco.OC, seL4

Single-server microkernel

CMU Mach (with 4.3BSD server), MkLinux, L4Linux

Multiserver microkernel

L4Re, HelenOS, MINIX 3, Genode, GNU/Hurd
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file system
driver server

Multiserver Microkernel (reprise)Multiserver Microkernel (reprise)

hardware

microkernel

application application application

privileged mode

unprivileged mode

memory
mgmt scheduler IPC

naming
server

location
server

device driver
server

device driver
server

device driver
server

file system
driver server
file system

driver server

device
multiplexer

file system
multiplexer

network
stack

security
server

...
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Hypervisor (Type 1)Hypervisor (Type 1)

hardware

hypervisor

hyper-privileged
modememory

mgmt scheduler comm

privileged mode

operating system

kernel

privileged mode

unprivileged mode

app app

app app

operating system

kernel

privileged mode

unprivileged mode

app app

app app

operating system

kernel

privileged mode

unprivileged mode

app app

app app
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Common Cloud DeploymentCommon Cloud Deployment

hardware

hypervisor

hyper-privileged
modememory

mgmt scheduler comm

privileged mode

operating system

kernel

privileged mode

unprivileged mode

app

operating system

kernel

privileged mode

unprivileged mode

app

operating system

kernel

privileged mode

unprivileged mode

app
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UnikernelUnikernel

hardware

hypervisor

hyper-privileged
modememory

mgmt scheduler comm

privileged mode

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component

unikernel

kernel
component

app
component
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Unikernel (2)Unikernel (2)

Library operating system

Approach to building operating systems

Unikernel

Architecture

Binary artifact
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Unikernel (3)Unikernel (3)

Library operating system

Payload (application) merged with the kernel

Kernel component acts as a library providing access to the 
hardware, threading, file systems, etc.

Only necessary functionality

Mostly static (single image), but there are dynamic variants

Code runs in privileged (less privileged) mode and single 
address space

No mode switches, address space switches

Syscalls can be replaced by function calls

Isolation/security provided by the underlying hypervisor (more 
privileged mode)
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Unikernel (4)Unikernel (4)

Madhavapeddy, A., Scott, D., J.: Unikernels: 
Rise of the Virtual Library Operating System, 
ACM Queue, 2013

MirageOS

University of Cambridge, Docker

Clean-slate components written in OCaml

Used in Docker for Mac, VPNKit



17Jakub Jermář, Advanced Operating Systems, February 28th 2019 Architectures

Unikernel (5)Unikernel (5)

Porter, D., E., et al.: Rethinking the library OS from 
the top down, ASPLOS, 2011

Drawbridge

Microsoft Research (2011– ?)

Librarified Windows

Used in MSSQL Server for Linux (2016)

Kantee, A.: The Rise and Fall of the Operating 
System, ;login:, October 2015, Vol. 40, No. 5

Rumpkernel

Librarified NetBSD

Popular source of components for any kernels (NetBSD, 
rumprun, Hurd, Genode, …)
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Future Hardware PredictionsFuture Hardware Predictions

More of

Complex interconnects & cache hierarchies

Cache-coherency protocols even more expensive

Diversity

Different cores together → same optimizations won’t work anymore

Heterogeneity

Multiple ISAs → can’t have a single-image OS

Less of / lack of

Cache coherency

Shared memory
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Options for general purpose OS’sOptions for general purpose OS’s

Resign

Make it easy to build specialized OS’s

Unikernels

Redesign

Attack the problem from different angle

Multikernels
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Implicit Message Passing in HardwareImplicit Message Passing in Hardware

Memory

Memory Shared
data

L2 Cache

CPU CPU

CPU CPU

L1 Cache L1 Cache

L2 Cache

L1 Cache L1 Cache

write

L2 Cache

CPU CPU

CPU CPU

L1 Cache L1 Cache

L2 Cache

L1 Cache L1 Cache

write

read
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Multikernel Paradigm ShiftMultikernel Paradigm Shift

Inside the OS layer

Do not assume coherent shared-memory SMP

If available, use to optimize message passing

No implicit inter-core state sharing

Simple, single-threaded, event-driven code

Explicit inter-core communication via message 
passing

Global state replica maintained by distributed 
algorithms
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MultikernelMultikernel

CPU

kernel

application

privileged mode

unprivileged mode

serverserver

application

CPU

kernel

serverserver

application

CPU

kernel

serverserver

application

application

State
replica

State
replica

State
replica
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Multikernel (2)Multikernel (2)

Kernel-userspace boundary not characteristic 
of multikernels

Baumann, A., et al.: The Multikernel: A new 
OS architecture for scalable multicore 
systems, SOSP ‘09

Barrelfish

ETH Zürich, Microsoft Research
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Inter-Process CommunicationInter-Process Communication

Sharing data between processes (tasks)

Crossing the process isolation in a managed and 
predictable way

Technically, any means of sharing data can be 
considered IPC (e.g. files, networking, middleware)

In monolithic systems, this usually works without using
a dedicated IPC mechanism

Crucial for microkernel systems
In microkernel systems, even files and networking cannot be 
implemented without an IPC mechanism
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Classical IPCClassical IPC

POSIX signals

Anonymous pipes

Named pipes

Sockets

POSIX shared memory

System V shared memory, IPC, semaphores
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CapabilitiesCapabilities

Capability

Object identifying an OS resource

Logical objects (open files, connections), typed memory 
areas (physical memory regions)

Capability reference

Local user space identification of a capability (file handles, 
virtual memory regions)

Operations with capabilities

Invoking a method with a capability reference
Permissible methods defined by the capability itself

Give a capability to someone else

Revoke a previously given capability
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Trivial Capability ExampleTrivial Capability Example

kernel space

user space

read(0, ...);

0 1 2 3 file descriptor table
(capabilities)

file descriptor
(capability reference)

vfs_file_t operating system resource
(open file)
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Trivial Capability Example (2)Trivial Capability Example (2)

kernel space

user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

0 1 2 3
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Trivial Capability Example (2)Trivial Capability Example (2)

kernel space

user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

recvmsg(socket, &msg, 0);

int fd;
memmove(&fd, CMSG_DATA(cmsg), sizeof(fd));

0 1 2 3 4



30Jakub Jermář, Advanced Operating Systems, February 28th 2019 Architectures

L4 IPC Before CapabilitiesL4 IPC Before Capabilities

L4::Pistachio
L4_Msg_t msg;
L4_MsgClear(&msg);
L4_Set_MsgLabel(&msg, LABEL);  // set user-defined label and flags
L4_Msg_AppendWord(&msg, 1);    // append some data
L4_Msg_AppendWord(&msg, 2);    // append some data
L4_MsgLoad(&msg);              // load into message registers

L4_ThreadId_t dest_tid;
L4_MsgTag_t tag;
…
tag = L4_Send(dest_id);        // send the loaded message to dest_id

global ID
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Issues with Global IDsIssues with Global IDs

Prevent unauthorized clients

Global ID can be guessed, even if officially unknown

Example: MINIX 3 communication control

Ordinary user processes allowed to communicate only with POSIX servers

Services and driver use policy configured in a file

Example: L4 v2 Chiefs and Clans

Threads can communicate with all threads in their own clan

Inter-clan communication must go through the chief threads

Permission checks

Failed checks can still DoS the server

Decide who can do what

Difficult to interpose

The global ID identifies the communication parties
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Capabilities Trump Global IDsCapabilities Trump Global IDs

Prevent unauthorized clients

Only authorized clients have the capability

Permission checks

Possession of the capability is the authorization to 
access the resource

Can have different capabilities for different access 
modes to the same resource

Easy to interpose

All names are local

Communicating parties don’t know each other
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L4 IPC with capabilitiesL4 IPC with capabilities

Fiasco.OC
l4_msg_regs_t *mr = l4_utcb_mr();
mr->mr[0] = 1;
mr->mr[1] = 2;

l4_cap_idx_t dest_cap;         // destination object
l4_msgtag_t tag;
…
tag = l4_ipc_send(dest_cap, l4_utcb(), l4_msgtag(LABEL, 2, 0, 0),  
                                       L4_IPC_NEVER);

local ID
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Fiasco.OC IPCFiasco.OC IPC

l4_msgtag_t l4_ipc(l4_cap_idx_t dest, l4_utcb_t *utcb,
    l4_umword_t flags, l4_umword_t slabel, l4_msgtag_t tag,
    l4_umword_t *rlabel, l4_timeout_t timeout);

SEND – Send to the specified destination

RECV – Receive from the specified destination

CALL (SEND | RECV) – Send, create reply capability and receive

WAIT (OPEN_WAIT | RECV) – Receive from any possible sender

SEND_AND_WAIT (SEND | OPEN_WAIT | RECV)

REPLY | SEND – Send to the reply capability

REPLY | SEND | RECV – Send to the reply capability and receive

REPLY_AND_WAIT (REPLY | SEND | OPEN_WAIT | RECV)
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Fiasco.OC Client/Server IPC ExampleFiasco.OC Client/Server IPC Example

l4_msg_regs_t *mr = l4_utcb_mr();
int a = 1;
int b = 1;

for (;;) {
  mr->mr[0] = a;
  mr->mr[1] = b;

  l4_msgtag_t tag;
  tag = l4_ipc_call(server_cap,   
    l4_utcb(), l4_msgtag(0, 2, 0, 0),
    L4_IPC_NEVER);
  …
  a = b;
  b = (int)mr->mr[0];
}

l4_msgtag_t tag;
l4_umword_t label;
l4_msg_regs_t *mr = l4_utcb_mr();  

tag = l4_ipc_wait(l4_utcb(), &label,
  L4_IPC_NEVER);
for (;;) {
  …
  int a = mr->mr[0];
  int b = mr->mr[1];
  mr->mr[0] = (int)(a + b);

  tag = l4_ipc_reply_and_wait(l4_utcb(), 
    l4_msgtag(0, 1, 0, 0), &label,
    L4_IPC_NEVER);
}

kernel space

user space

mr0
mr1

UTCB clnt

…

mr0
mr1

UTCB srv

…
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Fiasco.OC IPC (2)Fiasco.OC IPC (2)

l4_msgtag(label, words, items, flags)

Label

User-defined label, e.g. protocol number, error code

Words

Number of untyped words stored in the UTCB

Items

Number of typed items stored in the UTCB
Capabilities, mappings

Flags
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Fiasco.OC IPC (3)Fiasco.OC IPC (3)

l4_umword_t slabel, *rlabel

Send label

User-defined label copied to the recipient

Used to hold sender thread ID before capabilities

Mostly zero these days

Receive label

User-defined label copied from the sender

Usually zero

Bound IPC Gates and attached IRQ objects modify the label 
Can be used e.g. to store a pointer to the server object
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IPC MarshallingIPC Marshalling

By hand

Interface Definition Language

IDL compiler generates client and server stubs 
from the interface description in IDL

Overkill for microkernels

Need just one language, one architecture

Advanced constructs not used in microkernels

IDL compiler often bigger than the microkernel
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IPC MarshallingIPC Marshalling

Stream-based IPC
template <typename T>
Ipc_client &operator << (T value);

Ipc_client client(foo, &snd_buf, &rcv_buf);
int result;
client << OPCODE_BAR << 1 << IPC_CALL >> result;

C++11 IDL (parameter packs, ...)
struct Foo : … {
  L4_INLINE_RPC(long, bar, (int, int &));
};

L4::Cap<Foo> foo;
int result;
foo->bar(1, &result);
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L4Re Client/Server RPC ExampleL4Re Client/Server RPC Example

L4::Cap<Foo> foo;
…
int a;
L4Re:chksys(foo->bar(42, a));

printf(“%d\n”, a);

struct Foo_srv : L4::Epiface_t<Foo_srv, Foo>
{
  long op_bar(Foo::Rights, int value, int &a)
  { a = 2 * value; return L4_EOK; }
};

L4Re::Util::Registry_server<…> server;
Foo_srv foo;
L4Re::chkcap(server.registry()->register_obj(&foo, “name”)));
server.loop();

kernel space

user space

struct Foo : L4::Kobject_t<Foo, L4::Kobject, 0xf00>
{
  L4_INLINE_RPC(long, bar, (int, int &));
  typedef L4::Typeid::Rpcs<bar_t> Rpcs;
};                                           

0 1 2 3

L4::Ipc_gate

l4_ipc_call(0x3000)

label: &foo

server loop
bind_thread(…, &foo)

foo

0 1 2

mr0
mr1

UTCB clnt

…

mr0
mr1

UTCB srv

…

clientclient server
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Fiasco.OC Object ModelFiasco.OC Object Model

Kernel objects

L4::Thread

L4::Task

L4::Ipc_gate

Object for implementing userspace objects

L4::Irq

L4::Semaphore

L4::Scheduler

L4::Factory

Creates new kernel objects subject to factory quota

L4::Vcon
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Fiasco.OC Object Model (2)Fiasco.OC Object Model (2)

Capabilities

Typed by kernel/user object

Capability selectors / slots allocated in userspace

Like in seL4

Unlike in HelenOS, Mach, file descriptors

Mapped to kernel object upon object creation

Can be sent via IPC as a typed item

Can be mapped to a task via its capability

Syscall

Invocation of capability via IPC
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New Object Creation in L4Re / Fiasco.OCNew Object Creation in L4Re / Fiasco.OC

kernel space

user space

L4::Factory

0 1 2 3
Task’s object space

4

factory
1
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New Object Creation in L4Re / Fiasco.OCNew Object Creation in L4Re / Fiasco.OC

auto sem = L4Re::chkcap(L4Re::Util::make_unique_cap<L4::Semaphore>());

kernel space

user space

L4::Factory

0 1 2 3
Task’s object space

4

Sem
4

factory
1
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New Object Creation in L4Re / Fiasco.OCNew Object Creation in L4Re / Fiasco.OC

auto sem = L4Re::chkcap(L4Re::Util::make_unique_cap<L4::Semaphore>());

kernel space

user space

L4::Factory

L4Re::chksys(L4Re::Env::env()->factory()->create(sem.get()));

L4::Semaphore
0 1 2 3

Task’s object space

4

Sem
4

factory
1
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New Object Creation in L4Re / Fiasco.OCNew Object Creation in L4Re / Fiasco.OC

auto sem = L4Re::chkcap(L4Re::Util::make_unique_cap<L4::Semaphore>());

kernel space

user space

L4::Factory

sem->up();

L4Re::chksys(L4Re::Env::env()->factory()->create(sem.get()));

L4::Semaphore
0 1 2 3

Task’s object space

4

Sem
4

factory
1
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Q&A
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