
Proactive Security in Linux

Lukas Vrabec

About me

● Lukas Vrabec

● Software Engineer

● Member of Security Technologies team at Red Hat

● Fedora Contributor (selinux-policy, xguest, udica, netlabel_tools)

● lvrabec@redhat.com

● https://lukas-vrabec.com

● https://github.com/wrabcak

● https://twitter.com/mynamewrabcak

mailto:lvrabec@redhat.com
https://lukas-vrabec.com
https://github.com/wrabcak
https://twitter.com/mynamewrabcak

Agenda

● Proactive Security

● Traditional Linux Security

● SELinux Security Policy

● Updated Userspace with Easier Policy Customization

● SELinux and Containers

● AVC Messages

Proactive Security

WHEN DO PEOPLE CARE ABOUT SECURITY?

WHERE DO SECURITY ISSUES COME FROM?

HOW ARE THEY FIXED?

REACTIVE SECURITY

YOUR SYSTEM IS NOT PROTECTED DURING THE
WINDOW OF VULNERABILITY!

PROACTIVE SECURITY

PROACTIVE SECURITY HELPS TO PROTECT YOUR
SYSTEM DURING THE WINDOW OF VULNERABILITY!

SECURITY ENHANCED LINUX IS A SECURITY
MECHANISM BRINGING PROACTIVE SECURITY FOR

YOUR SYSTEM.

TECHNOLOGY FOR PROCESS ISOLATION TO MITIGATE
ATTACKS VIA PRIVILEGE ESCALATION

EXPLOIT EXAMPLES WHERE SELINUX HELPED TO
PROTECT YOUR SYSTEM

VENOM

VENOM

DOCKER CVE-2016-9962

VENOM

DOCKER CVE-2016-9962

SHELLSHOCK

HACKING TIME!

DEMO TIME!

http://www.youtube.com/watch?v=Ysshrh4aGOs

CONCLUSION?

Traditional Linux Security

$ ls -dl /var/www/html/

drwx r-x r-x. 2 root root /var/www/html/

 USER GROUP ALL

$ ps -ef | grep NetworkManager

root 11781 1 0 Feb27 00:01:24
/usr/sbin/NetworkManager --no-daemon

PROBLEMS

ROOT BYPASSING THIS SECURITY

SETUID BIT

SELinux Security Policy

CORE COMPONENT OF SELINUX

CORE COMPONENT OF SELINUX

COLLECTION OF SELINUX POLICY RULES

CORE COMPONENT OF SELINUX

COLLECTION OF SELINUX POLICY RULES

LOADED INTO THE KERNEL BY SELINUX
USERSPACE TOOLS

ENFORCED BY THE KERNEL

ENFORCED BY THE KERNEL

USED TO AUTHORIZE ACCESS REQUESTS ON THE
SYSTEM

BY DEFAULT EVERYTHING IS DENIED AND YOU
DEFINE POLICY RULES TO ALLOW CERTAIN

REQUESTS.

SELINUX POLICY RULES

DESCRIBE AN INTERACTION BETWEEN PROCESSES
AND SYSTEM RESOURCES

SELINUX POLICY RULE IN HUMAN LANGUAGE

"APACHE process can READ its LOGGING
FILE"

SELINUX VIEW OF THAT INTERACTION

ALLOW apache_process apache_log:FILE
READ;

apache_process apache_log

ARE LABELS

LABELS

ASSIGNED TO PROCESSES

ASSIGNED TO PROCESSES

ASSIGNED TO SYSTEM RESOURCES

ASSIGNED TO PROCESSES

ASSIGNED TO SYSTEM RESOURCES

BY SELINUX SECURITY POLICY

ASSIGNED TO PROCESSES

ASSIGNED TO SYSTEM RESOURCES

BY SELINUX SECURITY POLICY

MAP REAL SYSTEM ENTITIES INTO THE SELINUX
WORLD

LABELS IN REALITY

STORED IN EXTENDED ATTRIBUTES OF FILE
SYSTEMS - EXT2,EXT3, EXT4 ...

getfattr -n security.selinux /etc/passwd
getfattr: Removing leading '/' from absolute path

names
file: etc/passwd

security.selinux="system_u:object_r:passwd_file_t:s0"

ls -Z /etc/passwd
system_u:object_r:passwd_file_t:s0 /etc/passwd

SELINUX LABELS CONSIST OF FOUR PARTS

<user>:<role>:<type>:<MLS/MCS>

Not the same as Linux users

Several Linux users can be mapped to a single SELinux user

object_u is a placeholder for Linux system resources

system_u is a placeholder for Linux processes

Can be limited to a set of SELinux roles

<user>:<role>:<type>:<MLS/MCS>

<user>:<role>:<type>:<MLS/MCS>

<user>:<role>:<type>:<MLS/MCS>

<user>:<role>:<type>:<MLS/MCS>

SELinux users can have multiple roles but only one can be active

object_r is a placeholder for Linux system resources

system_r is a placeholder for system processes

Can be limited to a set of SELinux types

<user>:<role>:<type>:<MLS/MCS>

<user>:<role>:<type>:<MLS/MCS>

<user>:<role>:<type>:<MLS/MCS>

Security model known as TYPE ENFORCEMENT

In 99% you care only about TYPES

policy rules and interactions between types

<user>:<role>:<type>:<MLS/MCS>

Multi Level Security

Only the MCS part is used in Targeted Policy with the default s0 level

Allow users to mark resources with compartment tags (MCS1, MCS2)

Used for RHEL virtualization and for container security

s0:c1 can not access s0:c2

IN RHEL7 WE SHIP THE TARGETED SELINUX POLICY
BY DEFAULT

WE MOSTLY CARE ONLY ABOUT TYPES

SELINUX ALLOW RULE SYNTAX WITH TYPES

ALLOW TYPE1 TYPE2:OBJECT_CLASS
PERMISSION;

ALLOW APACHE_T APACHE_LOG_T:FILE READ;

DOMAIN TRANSITION RULES

TYPE_TRANSITION TYPE1 TYPE2:PROCESS
NEW_DOMAIN;

TYPE_TRANSITION INIT_T
HTTPD_EXEC_T:PROCESS HTTPD_T;

FILE TRANSITION RULES

TYPE_TRANSITION TYPE1 TYPE2:OBJECT_CLASS
NEW_TYPE;

TYPE_TRANSITION HTTPD_T VAR_LOG_T:FILE
HTTPD_LOG_T;

SELINUX MODES

ENFORCING

ENFORCING
SELINUX SECURITY POLICY IS ENFORCED BY

KERNEL

PERMISSIVE

PERMISSIVE
SELINUX SECURITY POLICY IS NOT ENFORCED BY

KERNEL

PERMISSIVE
SELINUX SECURITY POLICY IS NOT ENFORCED BY

KERNEL
ACCESSES ARE LOGGED

UPDATED USERSPACE WITH

EASIER POLICY CUSTOMIZATION

NEW COMMON INTERMEDIATE LANGUAGE - CIL

”M4+COMPILATION” VS. CIL

PERFORMANCE IMPROVEMENTS

PERFORMANCE IMPROVEMENTS

NEW POSSIBILITY FOR HLL

PERFORMANCE IMPROVEMENTS

NEW POSSIBILITY FOR HLL

USABILITY

LOCAL POLICY IN TWO STEPS

cat myapache.cil

(allow httpd_t httpd_log_t (file (open read
getattr)))

semodule -i myapache.cil

HOW DO WE DO IT WITH M4 + COMPILATION?

cat myapache.te

require {

 type httpd_t;

 type httpd_log_t;

}

allow httpd_t httpd_log_t:file { open read
getattr };

make -f /usr/share/selinux/devel/Makefile

semodule -i myapache.pp

SELINUX VS. CONTAINERS

APPLIES MAC TO IMPROVE SECURITY WHEN USING
VIRTUAL MACHINES

container_t:s0:c1,c2

container_file_t:s0:c1

container_t:s0:c2,c3

container_file_t:s0:c2 container_file_t:s0:c3

container_t:s0:c1,c2

container_file_t:s0:c1

container_t:s0:c2,c3

container_file_t:s0:c2 container_file_t:s0:c3

● container_t:s0:c1,c2
○ container_file_t:s0
○ container_file_t:s0:c1
○ container_file_t:s0:c2
○ container_file_t:s0:c1,c2

● container_t:s0:c2,c3
○ container_file_t:s0
○ container_file_t:s0:c2
○ container_file_t:s0:c3
○ container_file_t:s0:c2,c3

Granted access:

SELinux user:SELinux role:SELinux type:SELinux category

SELinux user:SELinux role:SELinux type:SELinux category

system_u:object_r:svirt_t:c306,c536

SELinux user:SELinux role:SELinux type:SELinux category

system_u:object_r:svirt_t:c306,c536

system_u:object_r:svirt_t:c206,c636

SELINUX KEEPS YOUR CONTAINER IN ITS OWN
SPACE

container:MCS1 container:MCS2 container:MCS3

SELinux user:SELinux role:SELinux type:SELinux category

SELinux user:SELinux role:SELinux type:SELinux category

system_u:object_r:container_t:c306,c536

SELinux user:SELinux role:SELinux type:SELinux category

system_u:object_r:container_t:c306,c536

system_u:object_r:container_t:c206,c636

SELinux user:SELinux role:SELinux type:SELinux category

system_u:object_r:container_t:c306,c536

system_u:object_r:container_t:c206,c636

system_u:object_r:container_t:c406,c736

AVC MESSAGES

WHERE CAN WE FIND LOGS?

cat /var/log/audit/audit.log

cat /var/log/audit/audit.log

ausearch -m AVC

type=AVC msg=audit(1226882925.714:136): avc: denied
{ read } for pid=2512 comm="httpd" name="file1"

dev=dm-0 ino=284133
scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:shadow_t:s0

tclass=file

HOW TO PARSE AVC MESSAGES?

ausearch

ausearch

audit2allow

ausearch -m AVC -ts recent

type=AVC msg=audit(1226882925.714:136): avc: denied { read } for
pid=2512 comm="httpd" name="shadow" dev=dm-0 ino=284133
scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:shadow_t:s0 tclass=file

ausearch -m AVC -ts recent | audit2allow

#============= httpd_t ==============

allow httpd_t shadow_t:file read;

● # semanage fcontext -> manage SELinux contexts

● # semanage boolean -> manage SELinux booleans

● # semanage port -> manage SELinux ports

● # semanage permissive -> put SELinux domain to permissive mode

● # sesearch -> search for present SELinux rules

● # ausearch -> search for SELinux denials

● # sealert -> SELinux troubleshooter

● # audit2allow -> Parse SELinux denials / create local SELinux module

● # semodule -DB / # semodule -B -> SELinux policy rebuild

ARE YOU USING SELINUX IN ENFORCING?

Lukas Vrabec’s blog https://lukas-vrabec.com/
Dan Walsh’s blog http://danwalsh.livejournal.com/
Miroslav Grepl’s blog https://mgrepl.wordpress.com/
Paul Moore’s blog http://www.paul-moore.com/
Petr Lautrbach’s blog https://plautrba.fedorapeople.org/

BLOGS

https://mojo.redhat.com/external-link.jspa?url=https%3A%2F%2Flvrabec-selinux.rhcloud.com%2F
https://lukas-vrabec.com/
https://mojo.redhat.com/external-link.jspa?url=http%3A%2F%2Fdanwalsh.livejournal.com%2F
http://danwalsh.livejournal.com/
https://mojo.redhat.com/external-link.jspa?url=https%3A%2F%2Fmgrepl.wordpress.com%2F
https://mgrepl.wordpress.com/
https://mojo.redhat.com/external-link.jspa?url=http%3A%2F%2Fwww.paul-moore.com%2Fblog%2F
http://www.paul-moore.com/
https://plautrba.fedorapeople.org/

