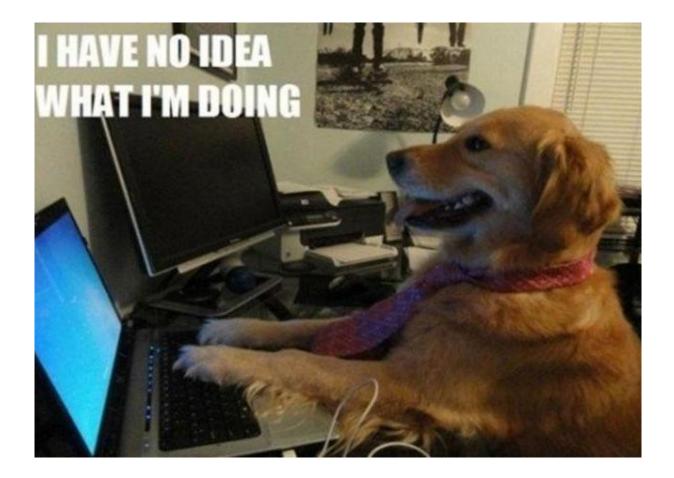
## **Proactive Security in Linux**

Lukas Vrabec

## About me

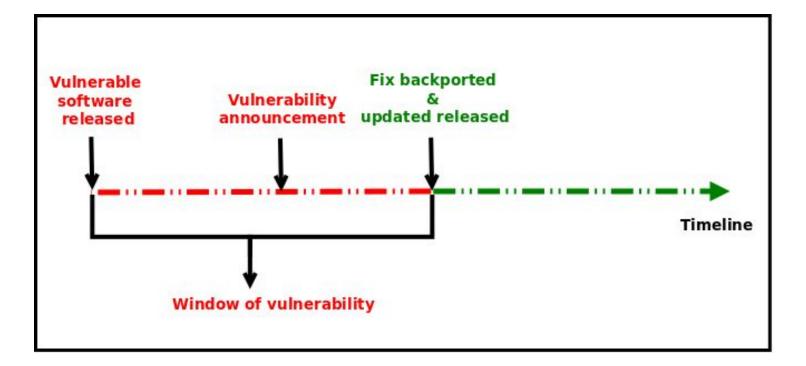
- Lukas Vrabec
- Software Engineer
- Member of Security Technologies team at Red Hat
- Fedora Contributor (selinux-policy, xguest, udica, netlabel\_tools)
- <u>lvrabec@redhat.com</u>
- <u>https://lukas-vrabec.com</u>
- <u>https://github.com/wrabcak</u>
- <u>https://twitter.com/mynamewrabcak</u>

# Agenda


- Proactive Security
- Traditional Linux Security
- SELinux Security Policy
- Updated Userspace with Easier Policy Customization
- SELinux and Containers
- AVC Messages

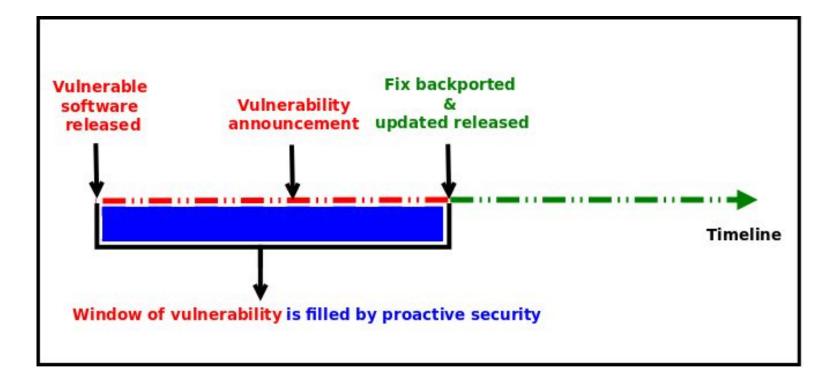
# **Proactive Security**

#### WHEN DO PEOPLE CARE ABOUT SECURITY?




#### WHERE DO SECURITY ISSUES COME FROM?




#### HOW ARE THEY FIXED?

#### **REACTIVE SECURITY**



### YOUR SYSTEM **IS NOT PROTECTED** DURING THE WINDOW OF VULNERABILITY!

#### **PROACTIVE SECURITY**

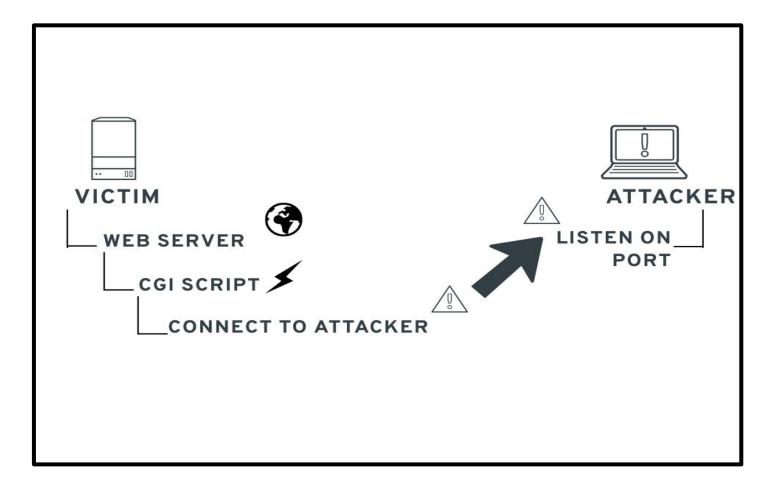


### PROACTIVE SECURITY HELPS TO **PROTECT** YOUR SYSTEM DURING THE WINDOW OF VULNERABILITY!

## SECURITY ENHANCED LINUX IS A SECURITY MECHANISM BRINGING PROACTIVE SECURITY FOR YOUR SYSTEM.

#### TECHNOLOGY FOR **PROCESS ISOLATION** TO MITIGATE ATTACKS VIA PRIVILEGE ESCALATION

### EXPLOIT EXAMPLES WHERE SELINUX HELPED TO PROTECT YOUR SYSTEM


#### VENOM

#### VENOM

#### **DOCKER CVE-2016-9962**

## VENOM DOCKER CVE-2016-9962 SHELLSHOCK

#### HACKING TIME!



#### DEMO TIME!

| and there a | Al Andre States |     | Constraint line |         |
|-------------|-----------------|-----|-----------------|---------|
| Lacker      |                 | 6 D |                 | 1171.11 |
|             |                 |     |                 |         |
|             |                 |     |                 |         |
|             |                 |     |                 |         |
|             |                 |     |                 |         |
|             |                 |     |                 |         |
|             |                 |     |                 |         |
|             |                 |     |                 |         |

#### CONCLUSION?



## **Traditional Linux Security**

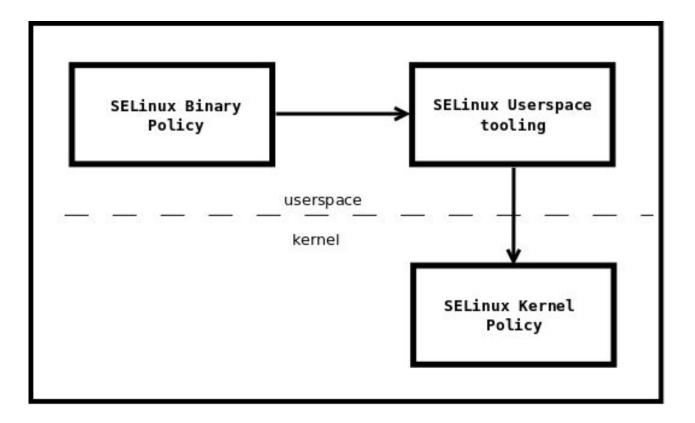
### \$ ls -dl /var/www/html/

## drwx r-x r-x. 2 root root /var/www/html/ ① ① ① USER GROUP ALL

\$ ps -ef | grep NetworkManager

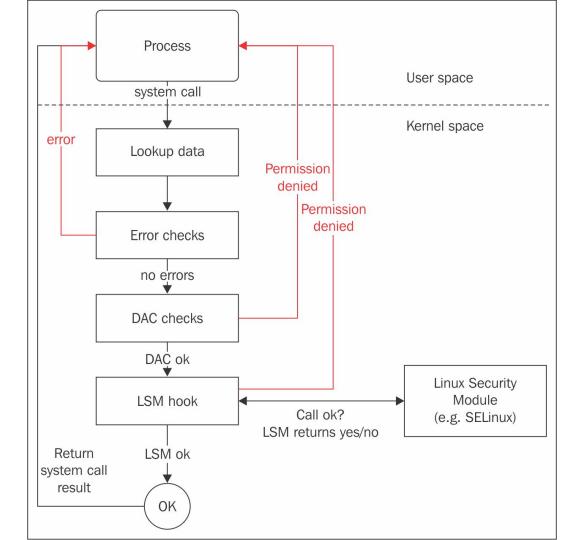
root 11781 1 0 Feb27 00:01:24 /usr/sbin/NetworkManager --no-daemon

#### PROBLEMS


## ROOT BYPASSING THIS SECURITY SETUID BIT

# **SELinux Security Policy**

#### **CORE COMPONENT OF SELINUX**


## CORE COMPONENT OF SELINUX COLLECTION OF SELINUX POLICY RULES

## CORE COMPONENT OF SELINUX COLLECTION OF SELINUX POLICY RULES LOADED INTO THE KERNEL BY SELINUX USERSPACE TOOLS



#### **ENFORCED BY THE KERNEL**

### ENFORCED BY THE KERNEL USED TO AUTHORIZE ACCESS REQUESTS ON THE SYSTEM



### BY DEFAULT **EVERYTHING** IS DENIED AND YOU DEFINE POLICY RULES TO ALLOW CERTAIN REQUESTS.

#### **SELINUX POLICY RULES**

### DESCRIBE AN INTERACTION BETWEEN PROCESSES AND SYSTEM RESOURCES

#### SELINUX POLICY RULE IN HUMAN LANGUAGE

#### "APACHE process can READ its LOGGING FILE"

#### SELINUX VIEW OF THAT INTERACTION

## ALLOW apache\_process apache\_log:FILE READ;

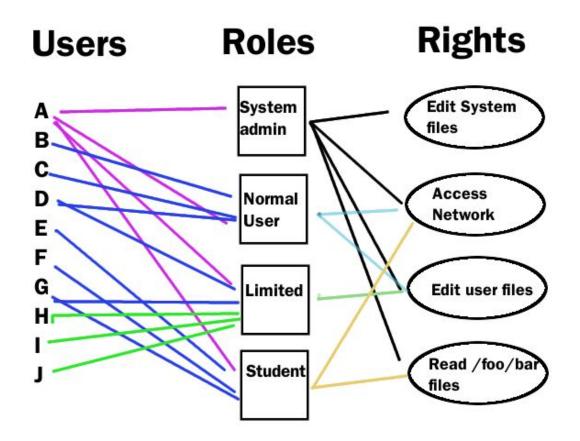
# apache\_process apache\_log ARE LABELS

#### LABELS

#### **ASSIGNED TO PROCESSES**

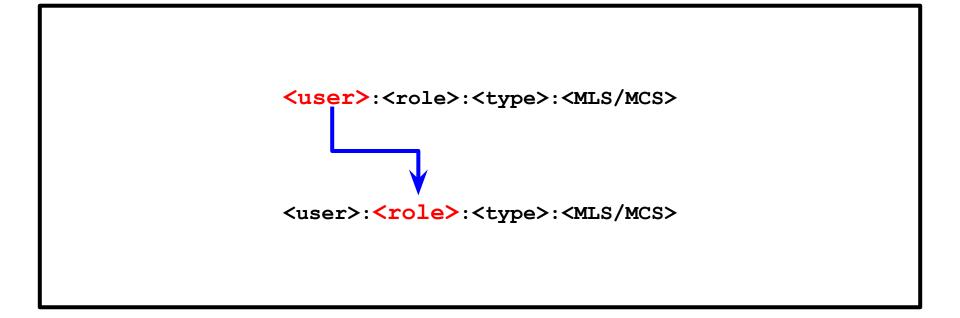
# ASSIGNED TO PROCESSES ASSIGNED TO SYSTEM RESOURCES

## ASSIGNED TO PROCESSES ASSIGNED TO SYSTEM RESOURCES BY SELINUX SECURITY POLICY

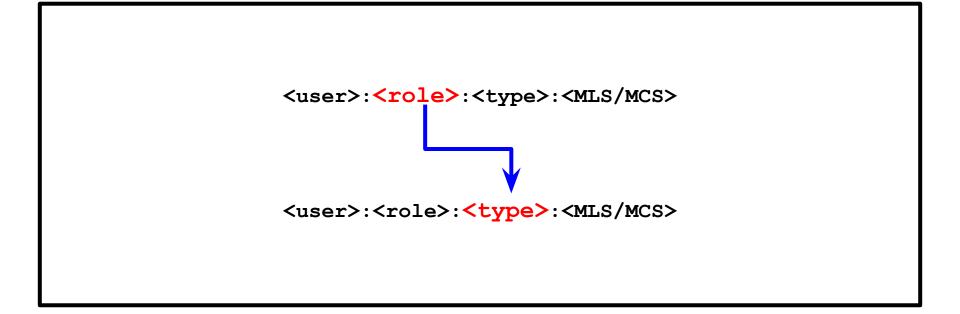

## ASSIGNED TO PROCESSES ASSIGNED TO SYSTEM RESOURCES BY SELINUX SECURITY POLICY MAP REAL SYSTEM ENTITIES INTO THE SELINUX WORLD

#### LABELS IN REALITY

#### STORED IN EXTENDED ATTRIBUTES OF FILE SYSTEMS - EXT2,EXT3, EXT4 ...


# getfattr -n security.selinux /etc/passwd getfattr: Removing leading '/' from absolute path names # file: etc/passwd security.selinux="system u:object r:passwd file t:s0" # ls -Z /etc/passwd system\_u:object\_r:passwd file t:s0 /etc/passwd

#### SELINUX LABELS CONSIST OF FOUR PARTS




Not the same as Linux users

Several Linux users can be mapped to a single SELinux user *object\_u* is a placeholder for Linux system resources *system\_u* is a placeholder for Linux processes Can be limited to a set of SELinux roles



SELinux users can have multiple roles but only one can be active object\_r is a placeholder for Linux system resources system\_r is a placeholder for system processes Can be limited to a set of SELinux types



#### Security model known as **TYPE ENFORCEMENT** In 99% you care only about TYPES policy rules and interactions between types

Multi Level Security

Only the MCS part is used in Targeted Policy with the default *s0* level Allow users to mark resources with compartment tags (*MCS1*, *MCS2*) Used for RHEL virtualization and for container security *s0:c1* can not access *s0:c2* 

| User     | Role     | Domain   | X Window S<br>ystem | su or sudo       | Execute in h<br>ome directo<br>ry and /tmp/<br>(default) | Networking   |
|----------|----------|----------|---------------------|------------------|----------------------------------------------------------|--------------|
| sysadm_u | sysadm_r | sysadm_t | yes                 | su and sudo      | yes                                                      | yes          |
| staff_u  | staff_r  | staff_t  | yes                 | only <b>sudo</b> | yes                                                      | yes          |
| user_u   | user_r   | user_t   | yes                 | no               | yes                                                      | yes          |
| guest_u  | guest_r  | guest_t  | no                  | no               | no                                                       | no           |
| xguest_u | xguest_r | xguest_t | yes                 | no               | no                                                       | Firefox only |

### IN RHEL7 WE SHIP THE **TARGETED** SELINUX POLICY BY DEFAULT

#### WE MOSTLY CARE ONLY ABOUT **TYPES**

#### SELINUX ALLOW RULE SYNTAX WITH TYPES

#### ALLOW TYPE1 TYPE2:OBJECT\_CLASS PERMISSION;

#### ALLOW APACHE\_T APACHE\_LOG\_T:FILE READ;

#### **DOMAIN TRANSITION RULES**

## TYPE\_TRANSITION TYPE1 TYPE2: PROCESS NEW\_DOMAIN;

### TYPE\_TRANSITION INIT\_T HTTPD\_EXEC\_T:PROCESS HTTPD\_T;

#### **FILE TRANSITION RULES**

### TYPE\_TRANSITION TYPE1 TYPE2:OBJECT\_CLASS NEW\_TYPE;

## TYPE\_TRANSITION HTTPD\_T VAR\_LOG\_T:FILE HTTPD\_LOG\_T;

# **SELINUX MODES**



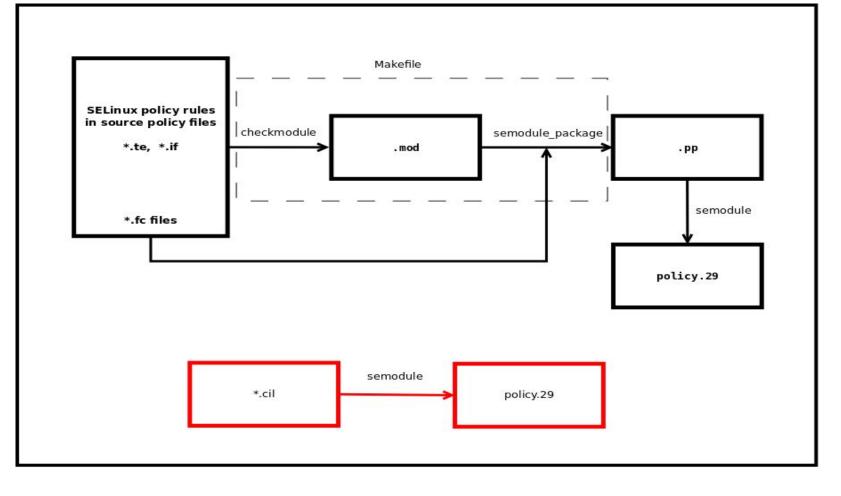
#### **ENFORCING**

### SELINUX SECURITY POLICY IS ENFORCED BY KERNEL



#### PERMISSIVE

## SELINUX SECURITY POLICY IS NOT ENFORCED BY KERNEL




## SELINUX SECURITY POLICY IS NOT ENFORCED BY KERNEL ACCESSES ARE LOGGED

# UPDATED USERSPACE WITH EASIER POLICY CUSTOMIZATION

#### NEW COMMON INTERMEDIATE LANGUAGE - CIL

#### "M4+COMPILATION" VS. CIL



#### **PERFORMANCE IMPROVEMENTS**

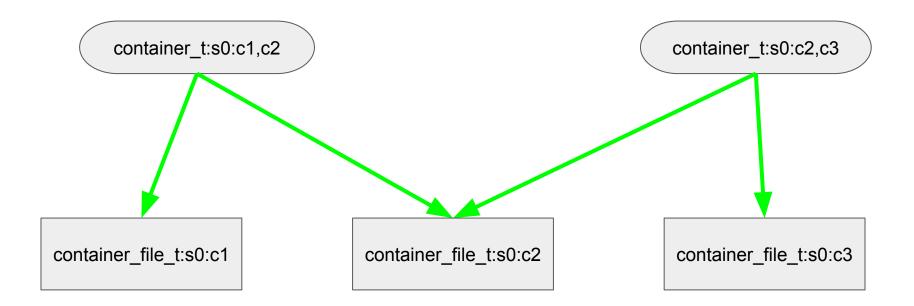
# PERFORMANCE IMPROVEMENTS **NEW POSSIBILITY FOR HLL**

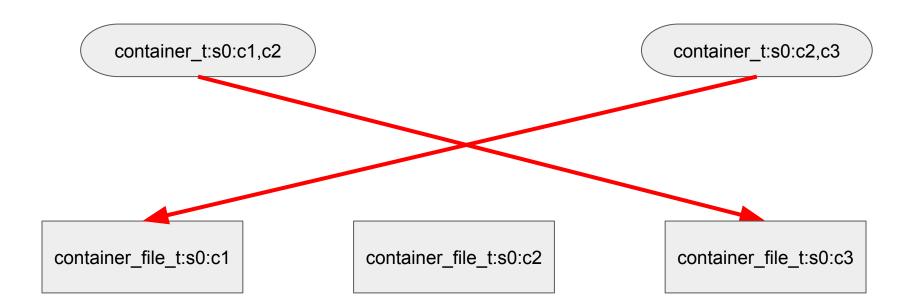
# PERFORMANCE IMPROVEMENTS NEW POSSIBILITY FOR HLL USABILITY

#### LOCAL POLICY IN TWO STEPS

# cat myapache.cil
(allow httpd\_t httpd\_log\_t (file (open read
getattr)))

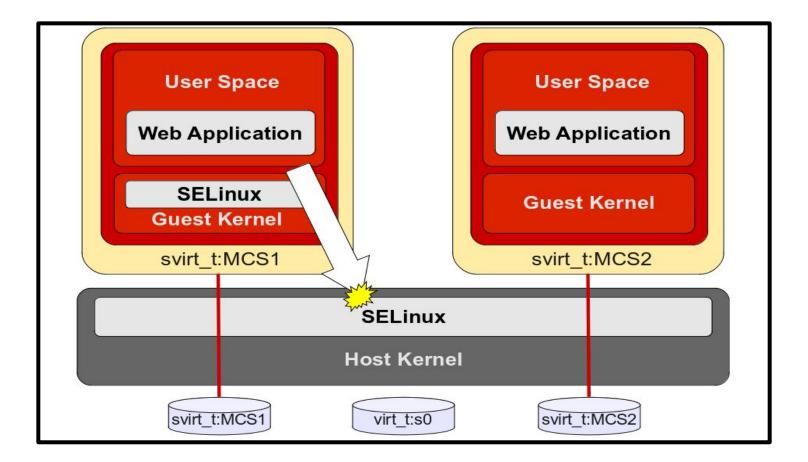
#### # semodule -i myapache.cil


#### HOW DO WE DO IT WITH M4 + COMPILATION?


```
# cat myapache.te
require {
 type httpd t;
 type httpd log t;
}
allow httpd t httpd log t:file { open read
getattr };
```

- # make -f /usr/share/selinux/devel/Makefile
- # semodule -i myapache.pp

# **SELINUX VS. CONTAINERS**

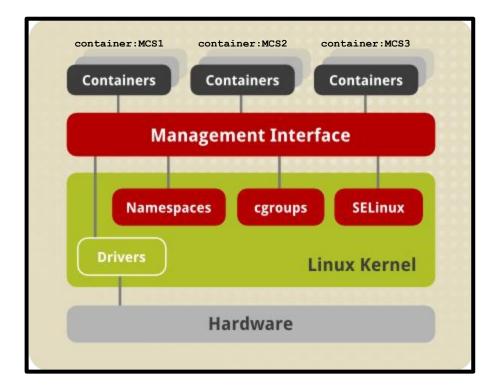

# APPLIES MAC TO IMPROVE SECURITY WHEN USING VIRTUAL MACHINES





# Granted access:

- container\_t:s0:c1,c2
  - o container\_file\_t:s0
  - container\_file\_t:s0:c1
  - $\circ$  container\_file\_t:s0:c2
  - container\_file\_t:s0:c1,c2
- container\_t:s0:c2,c3
  - container\_file\_t:s0
  - container\_file\_t:s0:c2
  - container\_file\_t:s0:c3
  - container\_file\_t:s0:c2,c3




SELinux user: SELinux role: SELinux type: SELinux category

# SELinux user:SELinux role:SELinux type:SELinux category system\_u:object\_r:svirt\_t:c306,c536

SELinux user:SELinux role:SELinux type:SELinux category
 system\_u:object\_r:svirt\_t:c306,c536
 system\_u:object\_r:svirt\_t:c206,c636

### SELINUX KEEPS YOUR CONTAINER IN ITS OWN SPACE



SELinux user:SELinux role:SELinux type:SELinux category

SELinux user:SELinux role:SELinux type:SELinux category system\_u:object\_r:container\_t:c306,c536 SELinux user:SELinux role:SELinux type:SELinux category
system\_u:object\_r:container\_t:c306,c536
system\_u:object\_r:container\_t:c206,c636

SELinux user:SELinux role:SELinux type:SELinux category
 system\_u:object\_r:container\_t:c306,c536
 system\_u:object\_r:container\_t:c206,c636
 system\_u:object\_r:container\_t:c406,c736

### **AVC MESSAGES**

#### WHERE CAN WE FIND LOGS?

#### # cat /var/log/audit/audit.log

# # cat /var/log/audit/audit.log # ausearch -m AVC

#### 

#### HOW TO PARSE AVC MESSAGES?

#### # ausearch

# # ausearch # audit2allow

# ausearch -m AVC -ts recent

type=AVC msg=audit(1226882925.714:136): avc: denied { read } for pid=2512 comm="httpd" name="shadow" dev=dm-0 ino=284133 scontext=unconfined\_u:system\_r:httpd\_t:s0 tcontext=unconfined\_u:object\_r:shadow\_t:s0 tclass=file

# ausearch -m AVC -ts recent | audit2allow

allow httpd\_t shadow\_t:file read;

- # semanage fcontext -> manage SELinux contexts
- *#* semanage boolean -> manage SELinux booleans
- *#* semanage port -> manage SELinux ports
- *#* semanage permissive -> put SELinux domain to permissive mode
- # sesearch -> search for present SELinux rules
- *#* ausearch -> search for SELinux denials
- # sealert -> SELinux troubleshooter
- # audit2allow -> Parse SELinux denials / create local SELinux module
- # semodule -DB / # semodule -B -> SELinux policy rebuild

#### ARE YOU USING SELINUX IN ENFORCING?

### BLOGS

Lukas Vrabec's blog<a href="https://lukas-vrabec.com/">https://lukas-vrabec.com/</a>Dan Walsh's blog<a href="http://danwalsh.livejournal.com/">http://danwalsh.livejournal.com/</a>Miroslav Grepl's blog<a href="https://mgrepl.wordpress.com/">https://mgrepl.wordpress.com/</a>Paul Moore's blog<a href="http://www.paul-moore.com/">http://www.paul-moore.com/</a>Petr Lautrbach's blog<a href="https://plautrba.fedorapeople.org/">https://plautrba.fedorapeople.org/</a>