
http://d3s.mff.cuni.czhttp://d3s.mff.cuni.cz/aosy

Jan Šenolt

Jan.Senolt@Oracle.COM

Advanced File Systems,
ZFS

Advanced File Systems,
ZFS

2Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Traditional UNIX File System, ext2Traditional UNIX File System, ext2

Block Grp 0 Block Grp 1 ... Block Grp NBB

Super Block

Block Bitmap

Inode Bitmap

Array of Inodes

Data Blocks

e2di_mode

e2di_uid

...

e2di_blocks[0]

e2di_blocks[1]

e2di_blocks[2]

...

e2di_blocks[14]

3Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Crash consistency problemCrash consistency problem

Appending a new block to the file involves at
least 3 IOs to different data structures at
different locations:

Block bitmap – mark block as allocated

Inode – update e2di_blocks[], e2di_size, ...

Block – write the actual payload

Cannot be performed atomically – what will
happen if we fail to make some of these
changes persistent?

4Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

fsckfsck

Lazy approach: try to detect the inconsistency and
fix it

Does not scale well

Can take very long time for large file system

Checks metadata only, unable to detect some
types of inconsistencies

For example: updated the bitmap and the inode but
crashed before writing the data block content

… but we still need fsck to detect other issues

5Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

JournalingJournaling

Write all changes to the journal first, make sure that all writes completed
and then made the actual in-place updates

Can be a file within fs or a dedicated disk

Journal replay – traverse the log, find all complete records and apply them

Physical journaling

Writes actual new content of blocks

Requires more space but is simple to replay

Logical journaling

Description of what needs to be done

Must be idempotent

TB1 Inode BlkBmp DBlk TE1 TB2 Inode

6Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Journaling (2)Journaling (2)

Journal aggregation

Do multiple updates in memory, log them together
in one transaction

Efficient when updating the same data multiple
times

(Ordered) metadata-only journal

Log only metadata → smaller write overhead

Write data block first, then create transaction for
metadata

Metadata block reuse issue

7Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Log structured FSLog structured FS

Copy-on-Write

Fast crash recovery

Long sequential I/O instead of many small I/Os

Better I/O bandwidth utilization

Aggressive caching

Most I/Os are actually writes

No block/inode bitmaps

But disk has a finite size

Needs garbage collector

8Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Log structured FS (2)Log structured FS (2)

Inode Map

inode# to block
mapping

stored with other
data but pointed
from Checkpoint
Regions

UID

<inode# : gen>

CR Seg1 Seg2 SegN CR

Seg. Summary

Data

#blks

Inode no

Generation

Offset

Next SS
Seg. Summary

Data

(unused)

9Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Log structured FS (3)Log structured FS (3)

Segment cleaner (garbage collector)

Creates empty segments by compacting
fragmented ones:

1) Read whole segment(s) into memory

2) Determine live data and copy them to another
segment(s)

3) Mark original segment as empty

Live data = still pointed by its inode

Increment inode version number when file deleted

10Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Soft UpdatesSoft Updates

Enforce rules for data updates:

Never point to an initialized structure

Never reuse block which is still referenced

Never remove existing reference until the new one exits

Keep block in memory, maintain their
dependencies and write them asynchronously

Cyclic dependencies

Create a file in a directory

Remove a different file in the same dir (both files’
inodes are in the same block)

11Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Soft Updates (2) – pro and conSoft Updates (2) – pro and con

Can mount the FS immediately after crash

The worst case scenario is a resource leak

Run fsck later or on background

Need snapshot

Hard to implement properly

Delayed unref breaks POSIX

fsync(2) and umount(2) slowness

12Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

ZFS vs traditional file systems ZFS vs traditional file systems

New administrative model

2 commands: zpool(1M) and zfs(1M)
Pooled storage

Eliminates the notion of volume and slices (partitions)

dynamic inode allocation

Data protection

Transactional object system

always consistent on disk, no fsck(1M)
Detects and corrects data corruption

Integrated RAID

stripes, mirror, RAID-Z

Advanced features

snapshots, writable snapshots, transparent compression & encryption,

replication, integrated NFS & CIFS sharing, deduplication, ...

13Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

ZFS in SolarisZFS in Solaris

ZPL

DSL

DMU + ARC

SPA + ZIO

zvol

DDI

VFS

devfs

libzfs
libzpool

apps &
libs

Ioctl(2) on
/dev/zfs

ldi_strategy(9F)

syscalls

VFS/vnode:
zfs_mount()

zfs_putpage()
zfs_inactive()

...

kernel

14Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Pooled Storage Layer, SPAPooled Storage Layer, SPA

ZFS pool

Collection of blocks allocated within a vdev hierarchy

top-level vdevs

physical x logical vdevs

leaf vdevs

special vdevs: l2arc, log, meta

Blocks addressed via “block pointers” - blkptr_t

ZIO

Pipelined parallel IO subsystem

Performs aggregation, compression, checksumming, ...

Calculates and verifies checksums

self-healing

15Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Pooled Storage Layer, SPA (2)Pooled Storage Layer, SPA (2)

root vdev

mirror-0

A B

C
top-level
vdevs

zpool status mypool
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 /A ONLINE 0 0 0
 /B ONLINE 0 0 0
 /C ONLINE 0 0 0

errors: No known data errors

16Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Pooled Storage Layer, blkptr_tPooled Storage Layer, blkptr_t

DVA – disk virtual address

VDEV – top-level vdev number

ASIZE – allocated size

LSIZE

logical size – without compression,
RAID-Z or gang overhead

PSIZE

compressed size

LVL – block level

0 – data block

>0 – indirect block

BDE

little vs big-endian

dedup

Encryption

FILL - number of blkptrs in block

64 56 48 40 32 24 16 8
0 VDEV 1 ASIZE
1 G| OFFSET 1
2 VDEV 2 ASIZE
3 G| OFFSET 2
4 VDEV 3 ASIZE
5 G| OFFSET 3
6 BDE| LVL TYPE CKSUM COMP PSIZE LSIZE
7 PADDING
8 PADDING
9 PHYSICAL BIRTH TXG
A BIRTH TXG
B FILL COUNT
C CHECKSUM[0]
D CHECKSUM[1]
E CHECKSUM[2]
F CHECKSUM[3]

ncpy|L4T

ncpy|L4T

ncpy|L4T

17Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Data Management Unit, DMUData Management Unit, DMU

dbuf (dmu_buf_t)

in-core block, stored in ARC

size 512B – 1MB

object (dnode_t, dnode_phys_t)

array of dbufs

types: DMU_OT_PLAIN_FILE_CONTENTS, DMU_OT_DNODE, …

dn_dbufs – list of dbufs

dn_dirty_records – list of modified dbufs

objset (objset_t, objset_phys_t)

set of objects

os_dirty_dnodes – list of modified dnodes

18Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Megiddo, Modha: ARC: A Self-Tuning, Low Overhead Replacement Cache [1]

p – increase if found in MRU-Ghost, decrease if found in MFU-Ghost

p – increase to fill unused memory, arc_shrink()

Evict list –list of unreferenced dbufs

can be moved to L2ARC: l2arc_feed_thread()

Hash table

hash(SPA, DVA, TXG)

arc_hash_find(), arc_hash_insert()

MRU MFUMRU ghost MFU ghost

p

c

c c

Adaptive Replacement Cache, ARCAdaptive Replacement Cache, ARC

19Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Dataset and Snapshot Layer, DSL Dataset and Snapshot Layer, DSL

dsl_dir_t, dsl_dataset_t

Adds names to objsets, creates parent – child relation

implements snapshots and clones

Maintains properties

DSL dead list

set of blkptrs which were referenced in the previous snapshot, but not in this dataset

when a block is no longer referenced:

free it if was born after most recent snapshot

otherwise put it on datasets dead list

DSL scan

traverse the pool, corrupted data triggers self-healing

scrub – scan all txgs vs resilver – scan only txg when vdev was missing

ZFS stream

serialized dataset(s)

20Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

ZFS Posix Layer, ZPL & ZFS VolumeZFS Posix Layer, ZPL & ZFS Volume

ZPL

creates a POSIX-like file system within dataset

znode_t, zfsvfs_t

System Attributes

portion of znode with variable layouts to accommodate type
specific attributes

ZVOL

block devices in /dev/zvol

SCSI targets (via COMSTAR)

direct access to DMU & ARC, RDMA

21Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Write to file (1)Write to file (1)

zfs_putapage(vnode, page, off, len, …):

 dmu_tx_t *tx = dmu_tx_create(vnode→zfsvfs→z_os);

 dmu_tx_hold_write(tx, vnode->zp->z_id, off, len);

 err = dmu_tx_assign(tx, TXG_NOWAIT);

 if (err)

 dmu_tx_abort(tx);

 return;

 dmu_buf_hold_array(z_os, z_id, off, len, ..., &dbp);

 bcopy(page, dbp[]->db_db_data);

 dmu_buf_rele_array(dbp,…)

 dmu_tx_commit(tx);

dmu_buf_t **dbp

22Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Write to file (2), dmu_tx_hold* Write to file (2), dmu_tx_hold*

What and how we are going to modify?

dmu_tx {
list_t tx_holds;
objset_t
*tx_objset;
int tx_txg;
…

}

dmu_tx_hold {
dnode_t txh_dnode;
int txh_space_towrite;
int txh_space_tofree;
…

}

dmu_tx_hold_free()

dmu_tx_hold_bonus()

23Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Write to file (3), dmu_tx_assign()Write to file (3), dmu_tx_assign()

Assign tx to an open TXG

dmu_tx_try_assign(tx):
for txh in tx->tx_holds:

towrite += txh->txh_space_towrite;
tofree += txh->txh_space_tofree;

dsl_pool_tempreserve_space
():

if (towrite + used > quota)
return (ENOSPC);

if (towrite > arc->avail)
return (ENOMEM);

if (towrite > write_limit)
return (ERESTART);

...

we throttle writes in order to write
all changes in 5 seconds

24Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Write to file (6), Txg Life CycleWrite to file (6), Txg Life Cycle

Each txg goes through 3-stage DMU pipeline:

Open

accepts new dmu_tx_assign()

Quiescing

waiting for every tx to call dmu_tx_commit()

txg_quiesce_thread()

Syncing

writing changes to disks

txg_sync_thread()

25Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Write to file (5), dmu_buf_hold_array()Write to file (5), dmu_buf_hold_array()

Prepare array of dbufs in ARC

dbuf exists

dbuf is active → allocate anonymous copy

dbuf is not active → anonymize dbuf

dbuf does not exist → allocate anonymous copy

Anonymous dbuf does not know its DVA

Link dbuf on dnode's list of dirty dbufs for this txg

dn_dirty_records

26Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Write to file (6), syncWrite to file (6), sync

Sync thread traverse dirty records and sync changes to disks

spa_sync():
dsl_pool_sync()
 dsl_dataset_sync()
 dmu_objset_sync()
 dmu_objset_sync_dnodes()
 dnode_sync() - also changes block size, ind. level etc
 dbuf_sync_list()
 dbuf_sync_indirect()
 dbuf_sync_leaf()
 dbuf_write()
 zio_write() - sends dbuf to ZIO

Iterate to convergence
usually < ~5 passes

27Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Write to file (6), ZIOWrite to file (6), ZIO

Depending on IO type, dbuf properties etc ZIO goes through
different stages of ZIO pipeline:

ZIO_STAGE_WRITE_BP_INIT – data compression

ZIO_STAGE_ISSUE_ASYNC – moves ZIO processing to taskq(9F)

ZIO_STAGE_CHECKSUM_GENERATE – checksum calculation

ZIO_STAGE_DVA_ALLOCATE – block allocation

ZIO_STAGE_READY – synchronization

ZIO_STAGE_VDEV_IO_START – start the IO by calling vdev_op_io_start
method

ZIO_STAGE_VDEV_IO_DONE

ZIO_STAGE_VDEV_IO_ASSESS – handle eventual IO error

ZIO_STAGE_DONE – undo aggregation

28Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Free space tracking methodsFree space tracking methods

bitmaps (UFS, extN)

each allocation unit represented by a bit

WAFL uses 32bit per allocation unit (4K)

bitmap can be huge, it needs to be initialized

slow to search for empty block

B+ tree (XFS, JFS)

tree of extents

each extent usually tracked twice: by offset and by size

29Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Free Space Tracking in ZFS (1)Free Space Tracking in ZFS (1)

Each top-level vdev is split into 200 metaslabs

don’t need to keep inactive metaslab’s info in RAM

Each metaslab has associated space map

AVL tree of extents in core

by offset – easy to coalesce extents

by size – for searching by extent size

time ordered log of allocations and frees on disk

only append new entries

destroy and recreate from the tree when log is too big

30Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Free Space Tracking in ZFS (2)Free Space Tracking in ZFS (2)

Top-level vdev selection

biased round robin, change every 512KB * #children

Choose metaslab with highest weight

low LBA, metaslab already in core

when allocating ditto copy, select metaslab which is 1/8 of vdev
size away

Choose extent

cursor – end of the last allocated extent

metaslab_ff_alloc

first sufficient extent after cursor

metaslab_df_alloc

FF for metaslabs up to 70% free, best-fit then

31Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Q&A

32Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

ReferencesReferences

● McKusick M.: Fsck – The UNIX File System Check Program, Revised in 1996

● Tweedie S. C.: Journaling the Linux ext2fs Filesystem, The Fourth Annual Linux Expo, May 1998

● Rosenblum M., Ousterhout J.: The Design and Implementation of a Log-Structured File System, SOSP
’91, Pacific Grove, CA, October 1991

● Ganger G., McKusick M.:
 Soft updates: a technique for eliminating most synchronous writes in the fast filesystem, ATEC '99
Proceedings of the annual conference on USENIX Annual Technical Conference, 1999

● Aurora V.: Soft updates, hard problems, LWM.net, 2009

● Megiddo N., Modha D.: ARC: A Self-Tuning, Low Overhead Replacement Cache, Proceedings of the 2003
Conference on File and Storage Technologies (FAST), 2003

● Sun Microsystem Inc: ZFS On-Disk Specification, Draft, 2006

● Bonwick J.: ZFS – The last word in file systems, 2008

./Fsck%20%E2%80%93%20The%20UNIX%20File%20System%20Check%20Program
http://e2fsprogs.sourceforge.net/journal-design.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/LFS.pdf
https://www.usenix.org/legacy/event/usenix99/full_papers/mckusick/mckusick.pdf
https://lwn.net/Articles/339337/
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.13.5210&rep=rep1&type=pdf
http://www.giis.co.in/Zfs_ondiskformat.pdf
http://cs.dartmouth.edu/~cs108/resources/stuff/zfs_last.pdf

33Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

AppendixAppendix

ZFS on-disk format

34Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Pooled Storage Layer, Physical VdevPooled Storage Layer, Physical Vdev

L0 L1 data L2 L3

16K

configuration
112K

uberblock[]
128K

struct uberblock {
 uint64_t ub_magic; /* 0x00bab10c */
 uint64_t ub_version; /* SPA_VERSION */
 uint64_t ub_txg; /* txg of last sync */
 uint64_t ub_guid_sum; /* sum of vdev guids */
 uint64_t ub_timestamp; /* time of last sync */
 blkptr_t ub_rootbp; /* MOS objset_phys_t */
};

4M

 vdev_label_t
packed nvlist libnvpair(3LIB),
top-level vdev’s subtree configuration

35Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Pooled Storage Layer, LabelPooled Storage Layer, Label
zdb -luuu /dev/dsk/c1t1d0s0
LABEL 0:
 timestamp: 1489412157 UTC: Mon Mar 13 13:35:57 2017
 version: 43
 name: 'tank'
 state: 0
 txg: 4
 pool_guid: 15329707826800509494
 hostid: 613234
 hostname: 'va64-x4100e-prg06'
 top_guid: 6425423019115642578
 guid: 6425423019115642578
 vdev_children: 2
 vdev_tree:
 type: 'disk'
 id: 0
 guid: 6425423019115642578
 path: '/dev/dsk/c1t1d0s0'
 devid: 'id1,sd@SSEAGATE_ST973401LSUN72G_0411EZXT____________3LB1EZXT/a'
 phys_path: '/pci@0,0/pci1022,7450@2/pci1000,3060@3/sd@1,0:a'
 whole_disk: 1
 metaslab_array: 29
 metaslab_shift: 29
 ashift: 9
 asize: 73394552832
 is_log: 0
 is_meta: 0
 create_txg: 4

36Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Pooled Storage Layer, UberblockPooled Storage Layer, Uberblock

Uberblock[0]
 magic = 0x0000000000bab10c
 version = 43
 txg = 132
 guid_sum = 5921737069822600244
 pool_guid = 15329707826800509494
 hostid = 0x95b72
 timestamp = 1489412593 date = Mon Mar 13 14:43:13 CET 2017
 rootbp = DVA[0]=<1:58001f400:800:STD:1> DVA[1]=<0:540cbc600:800:STD:1>
DVA[2]=<1:80002ac00:800:STD:1> [L0 DMU objset] fletcher4 uncompressed LE contiguous
unique unencrypted 3-copy size=800L/800P birth=132L/132P fill=7c
cksum=2e47b25da:5540247ccc2:4eb3db21abd63:308d529e5d9b7f9

37Jan Šenolt, Advanced Operating Systems, April 11th 2019 Advanced FS, ZFS

Pooled Storage Layer, On-diskPooled Storage Layer, On-disk

dnode_phys_t os_meta_dnode;
zil_header_t os_zil_header;
uint64_t os_type = DMU_OST_META

objset_phys_t dnode_phys_t

uint8_t dn_type = DMU_OT_DNODE
uint8_t dn_indblkshift;
uint8_t dn_nlevels;
uint8_t dn_nblkptr;
…
blkptr_t dn_blkptr[];

obj 0: DMU dnode

dnode_phys_t []

obj 1: Object dir

obj 2: Master obj

obj 3: ...

dn_type = DMU_OT_OBJECT_DIRECTORY
dn_indblkshift = 14;
dn_nlevels = 1;
dn_nblkptr = 1;
…
blkptr_t dn_blkptr[0];

dnode_phys_t

uint64_t mz_block_type;
uint64_t mz_salt;
uint64_t mz_normflags;
uint64_t mz_pad[5];
mzap_ent_phys mz_chunk[]

mzap_phys_t

uint64_t mze_value = 2
uint32_t mze_cd = …
uint32_t mze_pad;
char mze_name[] = 'root_dataset'

mzap_ent_phys_t

6
4B

