% Networking
% Jiri Benc, Red Hat
% Advanced Operating Systems, MFF UK

Scope

e focused on Linux
e using Linux terminology
e the principles are general

Assumption

knowledge of OSI model
understanding of packet structure
basic understanding of TCP/IP
understanding of 1/0 (DMA, IRQ)

User Point of View

e network interfaces

o usually having name and numeric ID
o can be assigned IP addresses
o can be administratively enabled/disabled

e apps operate with IP addresses
o but can specify an interface
e system tables

o routing tables
o neighbor tables

(]

Basic Packet Processing

NIC rx -» DMA - rx IRQ -

IRQ handler - schedule processing —»

packet descriptor -

[2->13->14-

socket lookup — socket queue - app wakeup -
app read — data copy — buffer release

app write = data copy — packet descriptor =
L4 ->13->1L2-

enqueue - dequeue -

DMA descriptor - DMA -

tx trigger -» NIC tx -

tx IRQ = IRQ handler » memory release

Driver Processing (rx)
NIC rx - DMA

DMA Ring Buffers

e separate tx and rx buffers
e configured by the driver
e contains data and metadata

Driver Processing (rx)

NIC rx -» DMA - rx IRQ -
IRQ handler » schedule processing

Interrupts

IRQ handler in the driver
bottom half scheduled
packet fetched

new DMA rx buffer allocated

Driver Processing (rx)

NIC rx - DMA - rx IRQ =
IRQ handler - schedule processing -
packet descriptor

Packet Descriptor

e allocated by the driver
e sk _buff in Linux, mbuf in BSD, etc.
e packet metadata

Packet Descriptor

buffer pointer

data start

data length

header pointers
incoming/outgoing interface
L3 protocol

queue priority
packet mark
reference count
offload fields

o vlan tag
o hash
o checksum

Packet Descriptor

buffer pointer

data start « allows pop/push
data length

header pointers

incoming/outgoing interface

L3 protocol

queue priority

packet mark

reference count

offload fields

o vlan tag
o hash
o checksum

Kernel Processing (rx)

NIC rx - DMA - rx IRQ =

IRQ handler - schedule processing -
packet descriptor -

L2

Entering the Network Stack

e driver calls helper functions for L2 processing

o L3 protocol filled in
o L2 header removed

e handed over to the core kernel

Kernel Processing (rx)

NIC rx - DMA - rx IRQ -

IRQ handler —» schedule processing —»
packet descriptor -

L2

Common Handling

e taps on network interface (packet inspection)
e rx hooks (virtual interfaces)
e protocol-independent firewall

Kernel Processing (rx)

NIC rx -» DMA - rx IRQ -

IRQ handler - schedule processing —»
packet descriptor -

[2->13->L4

Protocol Layers

L2 independent

table of L3 handlers — L3 protocol handler

L3 header processed and removed

per-L3 table of L4 handlers - L4 protocol handler
L4 header processed and removed

Kernel Processing (rx)

NIC rx - DMA - rx IRQ —»

IRQ handler = schedule processing —»
packet descriptor —»

L2 - L3

L3 -IP

defragmentation
routing decision

o forwarding: skip to tx path
o local delivery: continue up the stack

e |P firewall (various attachment points)

Kernel Processing (rx)

NIC rx - DMA - rx IRQ -
IRQ handler —» schedule processing —»
packet descriptor -

[2->13->14-
socket lookup — socket queue - app wakeup

L4 - TCP

TCP state machine

socket lookup

socket enqueue (of the sk_buff)
application woken up

Kernel Processing (rx)

NIC rx - DMA - rx IRQ -

IRQ handler = schedule processing —»

packet descriptor —»

[2>13->14-

socket lookup - socket queue - app wakeup -
app read — data copy — buffer release

Application
e read() syscall

e packet copy
e sk buff freed

Kernel Processing (tx)

app write —» data copy — packet descriptor

Application

o write() syscall
e sk buff allocation (for DMA)
e data copy

Kernel Processing (tx)

app write —» data copy — packet descriptor -
L4 - L3

Protocol Layers

e TCP header pushed
e |IP header pushed

o |P firewall
o routing decision
o fragmentation (MTU, PMTU)

Kernel Processing (tx)

app write —» data copy — packet descriptor —»
L4 13 -1L2

Protocol Layers

e L2 header pushed
o neighbor cache, ARP lookup
e may need to wait for neighbor resolution

put to a wait list

resumed by incoming ARP reply
timer assigned for timeout
ICMP signalled back on error

o O o o

Kernel Processing (tx)

app write —» data copy — packet descriptor —»
L4 -13->L2->
enqueue —» dequeue

Tx Queues

e packet classified and enqueued
e dequeued

o based on queue discipline
o sk_buff priority field

e passed to the driver

Driver Processing (tx)

app write —» data copy — packet descriptor —»
L4 ->13->L2-

enqueue - dequeue -

DMA descriptor - DMA -

tx trigger - NIC tx

Pushing to the NIC

e added to tx DMA ring buffer
e signalled to the NIC

Driver Processing (tx)

app write —» data copy — packet descriptor —»
L4 »>13->L2 -

enqueue - dequeue -

DMA descriptor - DMA -

tx trigger -» NIC tx —»

tx IRQ = IRQ handler » memory release

Freeing Resources

e NIC signals transmit done
e buffer unmapped, sk_buff released
e counters incremented

Special Protocols

ICMP

e just another L4 protocol
e communicates back to IP

o PMTU updates
o route redirects etc.

ARP and ICMPv6

e neighbor discovery

Performance Matters!

Performance Problems

e packet length unknown in advance

o DMA scatter-gather
o complicates packet processing (fragmented data)
o header pop may require realloc

Performance Problems

e header push requires realloc

o reserve space (at the driver level)
o still may get out of space

Performance Problems

e enqueueing before tx

o bufferbloat - high latency, lattency jitter, failure of
TPC congestion control
o smaller buffers, better queueing disciplines

Performance Problems

e shared resources
o flow caches, defrag buffers, etc.
s remotely DoSable!
o global limits
s locally DoSable

o per-group limits (cgroups)

Bottlenecks

e stack processing is too heavy

o aggregation of packets
o processing whole flows

e interrupts are slow
o busy polling under load
e reading memory is slow

o checksum offloading

Checksum Offloading

for tx, checksum on copy from user

FCS is always calculated by the NIC

IP header checksum calculation is cheap
L4 checksum

o on rx, the NIC verifies the checksum
o on tx, the NIC computes and fills in the checksum

e some protocols use CRC instead (SCTP)

Busy Polling under Load (NAPI)

e on rx, turn off IRQs

o fetch packets up to a limit

e repeat until there are no packets left
e turn on IRQ

Aggregation

Rx Aggregation (GRO)

e needs multiple rx queues in NIC
o configurable filters

e on rx, packets for the same flow from a NAPI batch are combined
into a super-packet

= GRO depends on NAPI

need to dissect the packets

passes the stack as a single packet

need to be able to reconstruct the original packets
split on tx (GSO)

o O o o o

Aggregation

Tx Aggregation (GSO)

e on tx, a packet is split into smaller packets

TCP segmentation for TCP super-packets
offloaded to NIC (TSO)

= TSO depends on checksum offloading
IP fragmentation for datagram protocols
done in software when needed

Virtual NICs

a driver not backed up by a real hardware
vlan interface

tun/tap

veth

0o O o o o

Containers (Network Name Spaces)

e partitioning of the network stack
e TCP/IP:

o

isolated routing tables
= independent IP addresses
separate limits (subject to global limits)

]

o

e each network interface can be in a single name space only

Virtual Networks

e building blocks:

virtual interfaces

software bridges (even programmable)
containers (network name spaces)
VMs

tunnels

o O o o o

Virtual Networks

Offloading to Hardware

e packet classification and switching
e match/action tables

o tc supporting match/action (and queues)

e SR-IOV switch

Other Bottlenecks

e data copy

zero copy

need to ensure security

tx: packet can be changed while in flight
rx: uninitialized data after packet end
resources problem: mem reclaim on rx
needs tx checksum offloading

0o o0 o o o o

Other Bottlenecks

e sk _buff allocation

o a lot of mm tricks depending on use case
o for some cases sk_buff may not be needed at all (L2 switching)

Other Bottlenecks

e too many features

o generic OS
o usually only a subset of features is needed
o XDP and eBPF

Conclusion

e complex topic
e fast moving
e is there interest in a deep dive?

Contact: jpenc@redhat.com (mailto:jbenc@redhat.com)

mailto:jbenc@redhat.com

