
%	Networking
%	Jiří	Benc,	Red	Hat
%	Advanced	Operating	Systems,	MFF	UK

Scope
focused	on	Linux
using	Linux	terminology
the	principles	are	general

Assumption
knowledge	of	OSI	model
understanding	of	packet	structure
basic	understanding	of	TCP/IP
understanding	of	I/O	(DMA,	IRQ)

User	Point	of	View
network	interfaces

usually	having	name	and	numeric	ID
can	be	assigned	IP	addresses
can	be	administratively	enabled/disabled

apps	operate	with	IP	addresses

but	can	specify	an	interface

system	tables

routing	tables
neighbor	tables
...

Basic	Packet	Processing
NIC	rx	→	DMA	→	rx	IRQ	→	
IRQ	handler	→	schedule	processing	→	
packet	descriptor	→	
L2	→	L3	→	L4	→	
socket	lookup	→	socket	queue	→	app	wakeup	→	
app	read	→	data	copy	→	buffer	release

.	.	.

app	write	→	data	copy	→	packet	descriptor	→	
L4	→	L3	→	L2	→	

enqueue	→	dequeue	→
DMA	descriptor	→	DMA	→	
tx	trigger	→	NIC	tx	→	
tx	IRQ	→	IRQ	handler	→	memory	release

Driver	Processing	(rx)
NIC	rx	→	DMA

DMA	Ring	Buffers
separate	tx	and	rx	buffers
configured	by	the	driver
contains	data	and	metadata

Driver	Processing	(rx)
NIC	rx	→	DMA	→	rx	IRQ	→	
IRQ	handler	→	schedule	processing

Interrupts
IRQ	handler	in	the	driver
bottom	half	scheduled
packet	fetched
new	DMA	rx	buffer	allocated

Driver	Processing	(rx)
NIC	rx	→	DMA	→	rx	IRQ	→	
IRQ	handler	→	schedule	processing	→	
packet	descriptor

Packet	Descriptor
allocated	by	the	driver
sk_buff	in	Linux,	mbuf	in	BSD,	etc.
packet	metadata

Packet	Descriptor
buffer	pointer
data	start
data	length
header	pointers
incoming/outgoing	interface
L3	protocol

queue	priority
packet	mark
reference	count
offload	fields

vlan	tag
hash
checksum

...

Packet	Descriptor
buffer	pointer
data	start	⬅	allows	pop/push
data	length
header	pointers
incoming/outgoing	interface
L3	protocol
queue	priority
packet	mark
reference	count
offload	fields

vlan	tag
hash
checksum

...

Kernel	Processing	(rx)
NIC	rx	→	DMA	→	rx	IRQ	→	
IRQ	handler	→	schedule	processing	→	
packet	descriptor	→	
L2

Entering	the	Network	Stack
driver	calls	helper	functions	for	L2	processing

L3	protocol	filled	in
L2	header	removed

handed	over	to	the	core	kernel

Kernel	Processing	(rx)

NIC	rx	→	DMA	→	rx	IRQ	→	
IRQ	handler	→	schedule	processing	→	
packet	descriptor	→	
L2

Common	Handling
taps	on	network	interface	(packet	inspection)
rx	hooks	(virtual	interfaces)
protocol-independent	firewall

Kernel	Processing	(rx)
NIC	rx	→	DMA	→	rx	IRQ	→	
IRQ	handler	→	schedule	processing	→	
packet	descriptor	→	
L2	→	L3	→	L4

Protocol	Layers
L2	independent
table	of	L3	handlers	→	L3	protocol	handler
L3	header	processed	and	removed
per-L3	table	of	L4	handlers	→	L4	protocol	handler
L4	header	processed	and	removed

Kernel	Processing	(rx)
NIC	rx	→	DMA	→	rx	IRQ	→	
IRQ	handler	→	schedule	processing	→	
packet	descriptor	→	
L2	→	L3

L3	–	IP
defragmentation
routing	decision

forwarding:	skip	to	tx	path
local	delivery:	continue	up	the	stack

IP	firewall	(various	attachment	points)

Kernel	Processing	(rx)
NIC	rx	→	DMA	→	rx	IRQ	→	
IRQ	handler	→	schedule	processing	→	
packet	descriptor	→	

L2	→	L3	→	L4	→	
socket	lookup	→	socket	queue	→	app	wakeup

L4	–	TCP
TCP	state	machine
socket	lookup
socket	enqueue	(of	the	sk_buff)
application	woken	up

Kernel	Processing	(rx)
NIC	rx	→	DMA	→	rx	IRQ	→	
IRQ	handler	→	schedule	processing	→	
packet	descriptor	→	
L2	→	L3	→	L4	→	
socket	lookup	→	socket	queue	→	app	wakeup	→	
app	read	→	data	copy	→	buffer	release

Application
read()	syscall
packet	copy
sk_buff	freed

Kernel	Processing	(tx)
app	write	→	data	copy	→	packet	descriptor

Application
write()	syscall
sk_buff	allocation	(for	DMA)
data	copy

Kernel	Processing	(tx)
app	write	→	data	copy	→	packet	descriptor	→	
L4	→	L3

Protocol	Layers
TCP	header	pushed
IP	header	pushed

IP	firewall
routing	decision
fragmentation	(MTU,	PMTU)

Kernel	Processing	(tx)
app	write	→	data	copy	→	packet	descriptor	→	
L4	→	L3	→	L2

Protocol	Layers
L2	header	pushed

neighbor	cache,	ARP	lookup

may	need	to	wait	for	neighbor	resolution

put	to	a	wait	list
resumed	by	incoming	ARP	reply
timer	assigned	for	timeout
ICMP	signalled	back	on	error

Kernel	Processing	(tx)
app	write	→	data	copy	→	packet	descriptor	→	
L4	→	L3	→	L2	→	
enqueue	→	dequeue

Tx	Queues
packet	classified	and	enqueued
dequeued

based	on	queue	discipline
sk_buff	priority	field

passed	to	the	driver

Driver	Processing	(tx)
app	write	→	data	copy	→	packet	descriptor	→	
L4	→	L3	→	L2	→	
enqueue	→	dequeue	→
DMA	descriptor	→	DMA	→	
tx	trigger	→	NIC	tx

Pushing	to	the	NIC
added	to	tx	DMA	ring	buffer
signalled	to	the	NIC

Driver	Processing	(tx)

app	write	→	data	copy	→	packet	descriptor	→	
L4	→	L3	→	L2	→	
enqueue	→	dequeue	→
DMA	descriptor	→	DMA	→	
tx	trigger	→	NIC	tx	→	
tx	IRQ	→	IRQ	handler	→	memory	release

Freeing	Resources
NIC	signals	transmit	done
buffer	unmapped,	sk_buff	released
counters	incremented

Special	Protocols
ICMP

just	another	L4	protocol
communicates	back	to	IP

PMTU	updates
route	redirects	etc.

ARP	and	ICMPv6
neighbor	discovery

Performance	Matters!

Performance	Problems
packet	length	unknown	in	advance

DMA	scatter-gather
complicates	packet	processing	(fragmented	data)
header	pop	may	require	realloc

Performance	Problems
header	push	requires	realloc

reserve	space	(at	the	driver	level)
still	may	get	out	of	space

Performance	Problems
enqueueing	before	tx

bufferbloat	–	high	latency,	lattency	jitter,	failure	of
TPC	congestion	control
smaller	buffers,	better	queueing	disciplines

Performance	Problems
shared	resources

flow	caches,	defrag	buffers,	etc.

remotely	DoSable!

global	limits

locally	DoSable

per-group	limits	(cgroups)

Bottlenecks
stack	processing	is	too	heavy

aggregation	of	packets
processing	whole	flows

interrupts	are	slow

busy	polling	under	load

reading	memory	is	slow

checksum	offloading

Checksum	Offloading
for	tx,	checksum	on	copy	from	user
FCS	is	always	calculated	by	the	NIC
IP	header	checksum	calculation	is	cheap
L4	checksum

on	rx,	the	NIC	verifies	the	checksum
on	tx,	the	NIC	computes	and	fills	in	the	checksum

some	protocols	use	CRC	instead	(SCTP)

Busy	Polling	under	Load	(NAPI)
on	rx,	turn	off	IRQs
fetch	packets	up	to	a	limit
repeat	until	there	are	no	packets	left
turn	on	IRQ

Aggregation
Rx	Aggregation	(GRO)

needs	multiple	rx	queues	in	NIC

configurable	filters

on	rx,	packets	for	the	same	flow	from	a	NAPI	batch	are	combined
into	a	super-packet

⇒	GRO	depends	on	NAPI
need	to	dissect	the	packets
passes	the	stack	as	a	single	packet
need	to	be	able	to	reconstruct	the	original	packets
split	on	tx	(GSO)

Aggregation
Tx	Aggregation	(GSO)

on	tx,	a	packet	is	split	into	smaller	packets

TCP	segmentation	for	TCP	super-packets
offloaded	to	NIC	(TSO)
⇒	TSO	depends	on	checksum	offloading
IP	fragmentation	for	datagram	protocols
done	in	software	when	needed

Virtual	NICs
a	driver	not	backed	up	by	a	real	hardware
vlan	interface
tun/tap
veth
...

Containers	(Network	Name	Spaces)
partitioning	of	the	network	stack
TCP/IP:

isolated	routing	tables
⇒	independent	IP	addresses
separate	limits	(subject	to	global	limits)

each	network	interface	can	be	in	a	single	name	space	only

Virtual	Networks
building	blocks:

virtual	interfaces
software	bridges	(even	programmable)
containers	(network	name	spaces)
VMs
tunnels

Virtual	Networks
Offloading	to	Hardware

packet	classification	and	switching
match/action	tables

tc	supporting	match/action	(and	queues)

SR-IOV	switch

Other	Bottlenecks
data	copy

zero	copy
need	to	ensure	security
tx:	packet	can	be	changed	while	in	flight
rx:	uninitialized	data	after	packet	end
resources	problem:	mem	reclaim	on	rx
needs	tx	checksum	offloading

Other	Bottlenecks
sk_buff	allocation

a	lot	of	mm	tricks	depending	on	use	case
for	some	cases	sk_buff	may	not	be	needed	at	all	(L2	switching)

Other	Bottlenecks
too	many	features

generic	OS
usually	only	a	subset	of	features	is	needed
XDP	and	eBPF

Conclusion
complex	topic
fast	moving
is	there	interest	in	a	deep	dive?

Contact:	jbenc@redhat.com	(mailto:jbenc@redhat.com)

mailto:jbenc@redhat.com

