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Introduction

e PikeOS —real-time, safety certified OS

e Desktop and Server vs.
e Embedded
e Real-Time
o Safety-Critical
e Certified

e Differences
e Scheduling
e Resource management
e Features
e Development
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Certification

e Testing
 Analysis

e Lot of time

e Even more paper

 Required for safety-critical systems
e Trains
o Airplanes
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PikeOS

Embedded, real-time, certified OS

~150 people (not just engineers)

e Rall

Avionics

Space

This presentation is not about PikeOS specifically
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PikeOS technical

Microkernel

* Inspired by L4

Memory protection (MMU)
 More complexthan FreeRTOS ©
Virtualization hypervisor
X86, ARM, SPARC, PowerPC

Eclipse IDE for development
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Personalities

 General
e POSIX
e Linux

« Domain specific
« ARINC653
 PikeOS native

e Other
e Ada, RT JAVA, AUTOSAR, ITRON, RTEMS
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PikeOS Architecture
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Embedded

« Examples
« Tamagochi
« Rail signal
« ABS brake controller

 Usually does not have

ANy /AN ReAL

Lots of RAM

Beefy CPU

Keyboard and mouse
PC Case

Monitor
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Embedded peripherals

Ethernet
» Sometimes with hardened connectors
 May be real-time

« CAN

e 12C

UART (Serial port)
JTAG for debugging
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Safety

e System does not harm the environment
« Safe aircraft does not harm or kill people during the flight

o #flawless
» Safe backup
» Airbus A340 rudder can still be controlled mechanically
« Safe failure-mode
o “Closed” rail signal is safe
 Harmless
 In-flight entertainment
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Safety

o # security
* but there are overlaps

o Safety needs to be certified
« More important than features or performance
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Hard-realtime

« Must meet deadlines
» Missed deadline can affect safety

 Deadlines given by
* Physics
e Car must start breaking immediately
 Hardware
» Serial port buffer size — data loss
e System design
« HW and SW must cooperate
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Real-Time Scheduling

e Lot of theory about running the tasks in correct order
« NSWEOO1- Embedded and Real Time Systems

* In practice simple thread priorities
e ONX, FreeRTOS, PikeOS, VxXWorks ...

o Often without time quantum
» Unlike Linux
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WCET

e =\Worst-Case Execution Time

« How long will the code run?
 Willwe satisfy the deadline?
* Upper bound (worst-case) is important

« Combination of code analysis and measurement

o Jitter
o Context switches
* Interrupt duration
* Interrupt latencies
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Enemies of Real-Time

« Shared resources
* Heap, devices, scheduler, CPU time
» Unpredictable state
» Locking
e Multi-processor
* Lockingless predictable
e Shared
 Cache
 Memory bandwidth
» Other processor units?
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More enemies

« Modern hardware
» Lazy algorithms
* Branch predictors
» Out-of-order execution
» Unpredictable pipeline
e TLB, caches
« Modern OS features
e Paging, overcommit
« Copy on Write
e Thread migration

« Complexity in general
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Memory Management

e Sometimes no MMU at all
 FreeRTOS, some VxWorks
o Simple virtual to physical mapping
X Paging, memory mapped files, copy on write ...

v' Shared memory
v Memory protection (NX bit etc.)

 No (ab-)use of free memory for buffers
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PikeOS Kernel Memory

 User-space needs kernel memory
 Threads
 Processes
« Memory mappings

 Pre-allocated pools

o Safe limit
 Avoids extra locks
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User-space memory allocation

« Heap allocator problems
* Locking
» Allocator latency
* Fragmentation
» Unpredictable failures

 General rule: avoid malloc/free
« Except for initialization
* Pre-allocate everything
» Malloc/free is error prone anyway

 Or use task-specific allocator
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Scheduling

« ARINCG653 (avionics standard) is common

« Time partitions + priorities
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Multi-Processor

Threads are bound to single CPU
* Explicit migration

* PikeOS has implicitmigration on IPC

« Scheduler ready queues per-CPU

Kernel should avoid locks
Especially in real-time syscalls

If locks are fair (FIFO queue), WCET is
e num_cpus*lock held time
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Multi-Processor

* Predicting resources like caches and memory is difficult

* Disable HyperThreading
 Itis not worth the trouble

« SYSGO’s recommendation “avoid the problem”
« Better solutions are being investigated

CPU 2 Non-realtime APP1 Non-realtime APP3

CPU1 Linux Real-time APP Non-realtime APP2
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Other considerations

Worst-case complexity

 Hash-mapis O(1) in practice, O(n) in worst case
 AVL or RB trees are always O(log n)

 Log messages may slow you down

Keep the code small (certification)

« Sadly, it often is better to copy and specialize the code

Build time design
e Static number of FDs, buffers etc.
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Other considerations

e Choose a suitable HW
o NXP, Xilinx ...

e Control over the platform
* You are not alone on X86
« System Management Mode
* Intel Management Engine
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Coding guidelines

« MISRA C coding standard

* EX. Rule: Initializer lists shall not contain persistent side effects

* In OS development, you have to break some of them

 EX. Rule: A conversion should not be performed between a pointer to
object and an integer type
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Mixing critical and non-critical ...

SYSGO

AN $ = s\ ReA\ EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Why microkernel?

e Separate critical and non-critical components
« MMU required

 We need to certify
* The critical components
 The kernel
o Smaller kernel = less work

 Non-critical parts can use
o Off-the-shelf software
e Linux
« => Easier development
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Why microkernel?

o Alternatives

» Certify everything

« Build two physically separate systems
e In PikeOS you can choose

o Kernel driver
» User-space driver

e Clear(er) line between levels of criticality
» Desktop PC crash is not fatal if you save your work
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Mixed criticality ex.

o Typical examples of mixed criticality:
» Control loop (critical) vs. diagnostics (non crltlcal)
o Combined Control Unit for multipl

Most critical

ASIL-D

Functional Category Hazard

Sudden Start

Driving Abrupt Acceleration

Loss of Driving Power

———
[ S S
S
Maximum 4 Wheel Braking ﬁ
e
E—
R
c————

Braking
Loss of Braking Function
Self-Steering

Steering Steering Lock

Loss of Assistance
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Partitioning example - Airbus A400M

_____

Level C Level D

Winches,
Crane

9 Applications
incl.
Waste&Water

Pictures: Rheimetall Defense A400M G Q GGO
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User-space drivers

« Modern hardwarelooks like a memory (MMIO)
« Can be mapped to user-space using MMU

 PikeOS interrupt handler is a user-space thread
« with regular scheduling

for(;;) {
wait _for_interrupt();
/* handle the interrupt */
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Interrupt handling

* Interrupt handling sequence:
1. HW runs kernel’s interrupt handler
Kernel masks (disables) the interrupt
Unblocks the thread blocked in wait_for_interrupt
Thread handles interrupt
Calls wait_for _interrupt
Kernel blocks the thread
Unmasks the interrupt
+ variations for different platforms

o Solaris, FreeBSD and others also run interrupt routines in
threaded context

N o O A W
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IOMMU

Q: Is MMU enough to isolate drivers?
A: No, because of DMA

The driver can tell device to read/write memory
 Bypasses CPU MMU

We can

* Ignore the problem
e Disable DMA

e Use IOMMU
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IOMMU

e [OMMU is MMU for the Non-CPU Bus Masters

 Available on modern X86, ARM and PowerPC
» Different hardware same goal

« Commonly used for PCI pass-throught
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Why virtualization?

To use Linux
e ... and Linux device drivers
o Safely

Offered by
e SYSGO

e GreenHills
e VXWorks ...

Minimal hypervisor part of the kernel

VMs subject to access rights
e ... and scheduling
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Virtualization comparison

e PikeOS offers

« Para-virtualization (similar to User-mode Linux)
 HW Assisted virtualization

Hardware Virtualization Para-virtualization
A

\ A

: P4Linux
QEMU HWVIRT Manager Linux -
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P4Linux

 Linux kernel as a PikeOS process

« Runs unmodified Linux executables

* Inspired by User Mode Linux

* Virtual CPUs backed by PikeOS threads

e Linux processes backed by PikeOS processes

« sysemu_enter syscall to “run the userspace”
» Use address space of other PikeOS process
« Start executing code in this context
* Returns control on exceptions, privileged instructions etc.
» Also returns to the old address space
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P4Linux

Full Linux memory management

« Paging, CoW, memory mappedfiles ...

« Page tables simulated by PikeOS processes

Linux kernel not mapped in user-space at all
« Copes surprisingly well with it

Para-virtual drivers for PikeOS devices

Code to access passed-through devices

 Most drivers are well behaved and use proper APIs to map device memaory
and handle interrupts

e => can be used unchanged
* You can play OpenArena on an Intel GPU
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Where can | get PikeOS?

« Not Commercial, Off-the-shelf product
o Typical workflow:

1.
2.

3.
4.
5.

Customer evaluates the HW (System on Chip) and SW (the OS)

We provide PikeOS either for QEMU or a SoC Development board and
some training or support

Customer builds a custom board for that SoC, with special peripherals
W e provide OS support for his custom board
We provide certification documents (if necessary)

e Best for mixed-criticality certified usage. Alternatives:
o Linux with RT patches? FreeRTOS?
» Lots of other RTOSes
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Certification/safety |

Safety: ECSS-E-40 - Space

»Software Engineering®

Safety: 1ISO 26262 - Automotive
»Road vehicles - Functional Safety*

Safety: DO-178C - Avionics

»Software Considerations in Airborne Systems and
Equipment Certification*

Safety: EN 50128/29 - Railway
»Software for Traincontroland —management systems*

Safety: IEC 61508 - Industry

~Functional Safety of Electrical / Electronic/
Programmable Electronic Safety-related Systems*

Security: SAR - Avionics
»Airbus Security Standard*

Security: ISO/IEC 15408-1/2/3 — Industry

»common Criteria for Information Technology Security
Evaluation*
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We provide Certification Kits
for PikeOSfor awiderange

of industrydomains and up
tothehighestlevels

Automotive Safety Integrity Level

D

C

B [A]

Design Assurance Level

D

C

B [A]

Safety Integrity Level

1

2

3 [4]

Safety Integrity Level

1

2

3 |4

Security Assurance Level

1

2

3 4]

Evaluation Assurance Level

1

2

3[4 A
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Certification/safety |l

e DO178, ...
e DO178 DAL C (medium)— 2-3 verification engineers on 1 developer

e Requirement-based testing
e High-level requirements, interface requirements, low-level requirements

e Traceability between all levels of requirements, code and tests is essential
» Code is annotated (by corresponding requirement name)

o 80% of verification efforts writing automated tests
e Minority of tests can be manual or rarely just code analysis
e From DAL C all code must be covered by tests

e The rest formal reviews (of documents, code, tests), WCET analysis, stack
analysis

¢ Independence between development and verification (verification engineer
cannot commitinto the verified code, ...)

e Bunch of other documents (plans, standards, ...)
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Certification/security |

e Connecting embedded devices to internet (internet of things)
e Increasing trend in the last decade

e Somewhatlimited know-how about how to secure embedded software
among device manufacturers

e Connecting safety-critical software to internet extends the possibility to
disable the device by a third-party
e How muchis this real today?

e Jeep Cherokie, 2015, documented a possibility of disabling brakes over
Internet (cellular phone connection)

e http://ilimatics.com/Remote%20Car%20Hacking.pdf
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http://illmatics.com/Remote%20Car%20Hacking.pdf

Certification/security |

e Common Ciriteria, Security Target
e Trusted world (kernel, PSP, some patrtitions)
e Untrusted world (partitions with low security demands (e.g. Linux))

o Well-defined interface between the two worlds

e Attack surface syscallsto kernel, ioctl and other communication channels
between the trusted and untrusted world

e Verification approach

e Some safety requirements marked as security relevant, these are then tested
more extensively or just differently

e Vulnerability analysis instead of some safety-related analyses

e Security board monitors reported vulnerabilities for other operating
systems

e Fuzztests
e Increased demands for physical security
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Possible topics for intership, thesis or project

e Applied research topics (thesis, research paper)
e |IATO134 MPLockingProtocol
e |[ATO136 EvaluationOfFormalMethodsToolsForVVDepartment
e |AT0104 SchedulerFormalVerificationDiplomaThesis

¢ Implementation topics (student project, thesis)
e |ATO133 PSPraspberrypi3
o |IAT0132 IPT-PikeOs-support
e |AT0135 IntegrateLW TinCodeo
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Examples of high-level requirements

e The Ethernet driver shall forward and separate traffic between up to 3
physical ports (VLANS).

e Aresource partition shall have a statically configurable set of memory
requirements which specify physical memory, memory mapped 1I/O and
port mapped /O regions assigned to the partition.

o PikeOS shall mask an interrupt source if no thread is registered as
handler for this interrupt.
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Examples of interface requirements

e vm_write() shall write an Ethernet message from the buffer "buff" to the
device and return the number of bytes written in "written_size" and
return P4 _E OK.

e The driver shall use interrupt specified by "Int" property.

e The driver shall raise a HM error of type P4 HM_TYPE_P4 E if the GEM
hardware has unsupported version.
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Examples of low-level requirements

e anisUDP_checkChksum() shall return ANIS_ERR_OK if the computed
checksum matches the valuein the header.

e anisUDP_send() shall copy the message payload into the allocated
buffer objects, prefixing the message with the UDP header and leaving
sufficient space to prefix the IP header.

e anisIGMP_sendLeave() returns ANIS_ERR_SPACE if there is no internal
buffer to store the message to send.
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Testsuite example

e TS ANIS
e ANIS = UDP/IP network stack certified for DAL C
e Low-level testsuite
e 694 test cases
e 587 interface requirements, 755 design requirements
e 125000 LOC of C code
e > 1000 pages of test suite description
e ~ 4000 manhours
e ANIS itself has 80 000 LOC of C code
e One test case 1-3 manhours in simplest cases; manweeks in

MOost complex cases
SYSGO
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