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Introduction

• PikeOS – real-time, safety certified OS
• Desktop and Server vs.
• Embedded
• Real-Time
• Safety-Critical
• Certified

• Differences
• Scheduling
• Resource management
• Features
• Development
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Certification

• Testing
• Analysis
• Lot of time
• Even more paper
• Required for safety-critical systems

• Trains
• Airplanes
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PikeOS

• Embedded, real-time, certified OS
• ~150 people (not just engineers)
• Rail
• Avionics
• Space
• This presentation is not about PikeOS specifically
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PikeOS technical

• Microkernel
• Inspired by L4

• Memory protection (MMU)
• More complex than FreeRTOS 

• Virtualization hypervisor
• X86, ARM, SPARC, PowerPC
• Eclipse IDE for development
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Personalities

• General
• POSIX
• Linux

• Domain specific
• ARINC653
• PikeOS native

• Other
• Ada, RT JAVA, AUTOSAR, ITRON, RTEMS
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PikeOS System Software
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Embedded

• Examples
• Tamagochi
• Rail signal
• ABS brake controller

• Usually does not have
• Lots of RAM
• Beefy CPU
• Keyboard and mouse
• PC Case
• Monitor
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Embedded peripherals

• Ethernet
• Sometimes with hardened connectors
• May be real-time

• CAN
• I2C
• UART (Serial port)
• JTAG for debugging
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Safety

• System does not harm the environment
• Safe aircraft does not harm or kill people during the flight

• ≠ flawless
• Safe backup

• Airbus A340 rudder can still be controlled mechanically
• Safe failure-mode

• “Closed” rail signal is safe
• Harmless

• In-flight entertainment
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Safety

• ≠ security
• but there are overlaps

• Safety needs to be certified
• More important than features or performance
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Hard-realtime

• Must meet deadlines
• Missed deadline can affect safety

• Deadlines given by
• Physics

• Car must start breaking immediately
• Hardware

• Serial port buffer size – data loss
• System design

• HW and SW must cooperate
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Real-Time Scheduling

• Lot of theory about running the tasks in correct order
• NSWE001 - Embedded and Real Time Systems

• In practice simple thread priorities
• QNX, FreeRTOS, PikeOS, VxWorks …

• Often without time quantum
• Unlike Linux
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WCET

• =Worst-Case Execution Time
• How long will the code run?

• Will we satisfy the deadline?
• Upper bound (worst-case) is important

• Combination of code analysis and measurement
• Jitter

• Context switches
• Interrupt duration
• Interrupt latencies
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Enemies of Real-Time

• Shared resources
• Heap, devices, scheduler, CPU time
• Unpredictable state
• Locking

• Multi-processor
• Locking less predictable
• Shared

• Cache
• Memory bandwidth
• Other processor units?



© SYSGO AG · INTERNAL 16

More enemies

• Modern hardware
• Lazy algorithms
• Branch predictors
• Out-of-order execution

• Unpredictable pipeline
• TLB, caches

• Modern OS features
• Paging, overcommit
• Copy on Write
• Thread migration

• Complexity in general
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Memory Management

• Sometimes no MMU at all
• FreeRTOS, some VxWorks

• Simple virtual to physical mapping
X Paging, memory mapped files, copy on write …
 Shared memory
 Memory protection (NX bit etc.)

• No (ab-)use of free memory for buffers
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PikeOS Kernel Memory

• User-space needs kernel memory
• Threads
• Processes
• Memory mappings

• Pre-allocated pools
• Safe limit
• Avoids extra locks
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User-space memory allocation

• Heap allocator problems
• Locking
• Allocator latency
• Fragmentation
• Unpredictable failures

• General rule: avoid malloc/free
• Except for initialization
• Pre-allocate everything
• Malloc/free is error prone anyway

• Or use task-specific allocator
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Scheduling

• ARINC653 (avionics standard) is common
• Time partitions + priorities

...

Time Partition N

...

Time Partition 2

...

Time Partition 1

1 2 1 3 4

TP
Scheduler

Prio 255

254

255

0

...

Time Partition 0

254

0

Active TP Scheme 0ms    20ms    40ms        70ms   90ms          150ms

TP0 is PikeOS extension
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Multi-Processor

• Threads are bound to single CPU
• Explicit migration
• PikeOS has implicit migration on IPC
• Scheduler ready queues per-CPU

• Kernel should avoid locks
• Especially in real-time syscalls
• If locks are fair (FIFO queue), WCET is

• num_cpus * lock_held_time
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Multi-Processor

• Predicting resources like caches and memory is difficult
• Disable HyperThreading

• it is not worth the trouble
• SYSGO’s recommendation “avoid the problem”
• Better solutions are being investigated

Non-realtime APP1

Linux Real-time APP Non-realtime APP2

Non-realtime APP3Idle

CPU 1

CPU 2
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Other considerations

• Worst-case complexity
• Hash-map is O(1) in practice, O(n) in worst case
• AVL or RB trees are always O(log n)

• Log messages may slow you down
• Keep the code small (certification)

• Sadly, it often is better to copy and specialize the code
• Build time design

• Static number of FDs, buffers etc.
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Other considerations

• Choose a suitable HW
• NXP, Xilinx …

• Control over the platform
• You are not alone on X86
• System Management Mode
• Intel Management Engine
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Coding guidelines

• MISRA C coding standard
• Ex. Rule: Initializer lists shall not contain persistent side effects

• In OS development, you have to break some of them
• Ex. Rule: A conversion should not be performed between a pointer to 

object and an integer type
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Mixing critical and non-critical …
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Why microkernel?

• Separate critical and non-critical components
• MMU required

• We need to certify
• The critical components
• The kernel
• Smaller kernel = less work

• Non-critical parts can use 
• Off-the-shelf software
• Linux
• => Easier development
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Why microkernel?

• Alternatives
• Certify everything
• Build two physically separate systems

• In PikeOS you can choose
• Kernel driver
• User-space driver

• Clear(er) line between levels of criticality
• Desktop PC crash is not fatal if you save your work



© SYSGO AG · INTERNAL 29

Mixed criticality ex.

• Typical examples of mixed criticality:
• Control loop (critical) vs. diagnostics (non-critical)
• Combined Control Unit for multiple functions in car 

Least critical Most critical
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Hardware

PikeOS Virtualization Platform

Level B

Ramp, Doors, 
Aerial Delivery, 

Cargo Locks
...

Level B

Graphics
OpenGL

GUI
HMI

Level C

Winches, 
Crane

....

Level D

9 Applications
incl.

Waste&Water

Pictures: Rheimetall Defense A400M 

Partitioning example - Airbus A400M
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User-space drivers

• Modern hardware looks like a memory (MMIO)
• Can be mapped to user-space using MMU
• PikeOS interrupt handler is a user-space thread

• with regular scheduling

for(;;) {

wait_for_interrupt();

/* handle the interrupt */

}
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Interrupt handling

• Interrupt handling sequence:
1. HW runs kernel’s interrupt handler
2. Kernel masks (disables) the interrupt
3. Unblocks the thread blocked in wait_for_interrupt
4. Thread handles interrupt
5. Calls wait_for_interrupt
6. Kernel blocks the thread
7. Unmasks the interrupt

+ variations for different platforms
• Solaris, FreeBSD and others also run interrupt routines in 

threaded context
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IOMMU

• Q: Is MMU enough to isolate drivers?
• A: No, because of DMA
• The driver can tell device to read/write memory

• Bypasses CPU MMU
• We can

• Ignore the problem
• Disable DMA
• Use IOMMU CPU

Disk

RAM

BUS
(PCI-e …)

Please read disk, store 
data at 0xDEADBEEF

Please write 
“kernel_shellcode.bin”

to 0xDEADBEEF

M
M
U
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IOMMU

• IOMMU is MMU for the Non-CPU Bus Masters
• Available on modern X86, ARM and PowerPC

• Different hardware same goal
• Commonly used for PCI pass-throught
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Why virtualization?

• To use Linux
• … and Linux device drivers
• Safely

• Offered by
• SYSGO
• GreenHills
• VxWorks …

• Minimal hypervisor part of the kernel
• VMs subject to access rights

• … and scheduling
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Virtualization comparison

• PikeOS offers
• Para-virtualization (similar to User-mode Linux)
• HW Assisted virtualization

Linux Kernel

KVM

QEMU 

Guest Linux

PikeOS

Hypervisor

HWVIRT Manager

Guest Linux

PikeOS

SysEmu

P4Linux

Linux Kernel

PTrace

User-mode 
Linux

Hardware Virtualization Para-virtualization
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P4Linux

• Linux kernel as a PikeOS process
• Runs unmodified Linux executables
• Inspired by User Mode Linux
• Virtual CPUs backed by PikeOS threads
• Linux processes backed by PikeOS processes
• sysemu_enter syscall to “run the userspace”

• Use address space of other PikeOS process
• Start executing code in this context
• Returns control on exceptions, privileged instructions etc.

• Also returns to the old address space
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P4Linux

• Full Linux memory management
• Paging, CoW, memory mapped files …
• Page tables simulated by PikeOS processes

• Linux kernel not mapped in user-space at all
• Copes surprisingly well with it

• Para-virtual drivers for PikeOS devices
• Code to access passed-through devices

• Most drivers are well behaved and use proper APIs to map device memory 
and handle interrupts

• => can be used unchanged
• You can play OpenArena on an Intel GPU
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Where can I get PikeOS?

• Not Commercial, Off-the-shelf product
• Typical workflow:

1. Customer evaluates the HW (System on Chip) and SW (the OS)
2. We provide PikeOS either for QEMU or a SoC Development board and 

some training or support
3. Customer builds a custom board for that SoC, with special peripherals
4. We provide OS support for his custom board
5. We provide certification documents (if necessary)

• Best for mixed-criticality certified usage. Alternatives:
• Linux with RT patches? FreeRTOS?
• Lots of other RTOSes
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Certification/safety I

Safety: ISO 26262 - Automotive

Safety: DO-178C - Avionics

„Road vehicles - Functional Safety“

„Software Considerations in Airborne Systems and
Equipment Certification“

Safety: EN 50128/29 - Railway
„Software for Traincontrol and –management systems“

Safety: IEC 61508 - Industry
„Functional Safety of Electrical / Electronic / 
Programmable  Electronic Safety-related Systems“

Security: ISO/IEC 15408-1/2/3 – Industry
„Common Criteria for Information Technology Security
Evaluation“

Security: SAR - Avionics
„Airbus Security Standard“

D C B A

D C B A

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4 5 6 7

Safety Integrity Level

Design Assurance Level

Automotive Safety Integrity Level

Safety Integrity Level

Security Assurance Level

Evaluation Assurance Level

Safety: ECSS-E-40 - Space
„Software Engineering“

We provide Certification Kits
for PikeOS for a wide range
of industry domains and up
to the highest levels
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Certification/safety II

• DO178, …
• DO178 DAL C (medium) – 2-3 verification engineers on 1 developer

• Requirement-based testing
• High-level requirements, interface requirements, low-level requirements

• Traceability between all levels of requirements, code and tests is essential
• Code is annotated (by corresponding requirement name)

• 80% of verification efforts writing automated tests
• Minority of tests can be manual or rarely just code analysis
• From DAL C all code must be covered by tests

• The rest formal reviews (of documents, code, tests), WCET analysis, stack
analysis

• Independence between development and verification (verification engineer
cannot commit into the verified code, …)

• Bunch of other documents (plans, standards, …)
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Certification/security I

• Connecting embedded devices to internet (internet of things)
• Increasing trend in the last decade
• Somewhat limited know-how about how to secure embedded software

among device manufacturers
• Connecting safety-critical software to internet extends the possibility to

disable the device by a third-party
• How much is this real today?
• Jeep Cherokie, 2015, documented a possibility of disabling brakes over

Internet (cellular phone connection)
• http://illmatics.com/Remote%20Car%20Hacking.pdf

http://illmatics.com/Remote%20Car%20Hacking.pdf
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Certification/security II

• Common Criteria, Security Target
• Trusted world (kernel, PSP, some partitions)
• Untrusted world (partitions with low security demands (e.g. Linux))
• Well-defined interface between the two worlds
• Attack surface syscalls to kernel, ioctl and other communication channels

between the trusted and untrusted world
• Verification approach

• Some safety requirements marked as security relevant, these are then tested
more extensively or just differently

• Vulnerability analysis instead of some safety-related analyses
• Security board monitors reported vulnerabilities for other operating

systems
• Fuzz tests
• Increased demands for physical security
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Possible topics for intership, thesis or project

• Applied research topics (thesis, research paper)
• IAT0134 MPLockingProtocol
• IAT0136 EvaluationOfFormalMethodsToolsForVVDepartment
• IAT0104 SchedulerFormalVerificationDiplomaThesis

• Implementation topics (student project, thesis)
• IAT0133 PSPraspberrypi3 
• IAT0132 IPT-PikeOs-support
• IAT0135 IntegrateLWTinCodeo
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Examples of high-level requirements

• The Ethernet driver shall forward and separate traffic between up to 3 
physical ports (VLANs).

• A resource partition shall have a statically configurable set of memory 
requirements which specify physical memory, memory mapped I/O and 
port mapped I/O regions assigned to the partition.

• PikeOS shall mask an interrupt source if no thread is registered as 
handler for this interrupt.



© SYSGO AG · INTERNAL 46

Examples of interface requirements

• vm_write() shall write an Ethernet message from the buffer "buff" to the 
device and return the number of bytes written in "written_size" and 
return P4_E_OK.

• The driver shall use interrupt specified by "Int" property.

• The driver shall raise a HM error of type P4_HM_TYPE_P4_E if the GEM 
hardware has unsupported version.
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Examples of low-level requirements

• anisUDP_checkChksum() shall return ANIS_ERR_OK if the computed 
checksum matches the value in the header.

• anisUDP_send() shall copy the message payload into the allocated 
buffer objects, prefixing the message with the UDP header and leaving 
sufficient space to prefix the IP header.

• anisIGMP_sendLeave() returns ANIS_ERR_SPACE if there is no internal 
buffer to store the message to send.
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Testsuite example

• TS_ANIS
• ANIS = UDP/IP network stack certified for DAL C
• Low-level testsuite
• 694 test cases
• 587 interface requirements, 755 design requirements
• 125 000 LOC of C code
• > 1000 pages of test suite description
• ~ 4000 manhours

• ANIS itself has 80 000 LOC of C code
• One test case 1-3 manhours in simplest cases; manweeks in 

most complex cases
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