Real-Time, Safe and Certified OS

SYSGO

'\'ll_r',!.E:'H'..:“'.-_' _l I'-.-}"'\lk

Roman Kapl <rka@sysgo.com>
drivers, customer projects, development
Martinec <rka@sysgo.com>

Introduction

e PikeOS —real-time, safety certified OS

e Desktop and Server vs.
e Embedded
e Real-Time
o Safety-Critical
e Certified

e Differences
e Scheduling
e Resource management
e Features
e Development

SYSGO

ANy /AN ReAL EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Certification

e Testing
 Analysis

e Lot of time

e Even more paper

 Required for safety-critical systems
e Trains
o Airplanes

SYSGO

AN $ = s\ ReA\ EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

PikeOS

Embedded, real-time, certified OS

~150 people (not just engineers)

e Rall

Avionics

Space

This presentation is not about PikeOS specifically

SYSGO

ANy /AN ReAL EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

PikeOS technical

Microkernel

* Inspired by L4

Memory protection (MMU)
 More complexthan FreeRTOS ©
Virtualization hypervisor
X86, ARM, SPARC, PowerPC

Eclipse IDE for development

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Personalities

 General
e POSIX
e Linux

« Domain specific
« ARINC653
 PikeOS native

e Other
e Ada, RT JAVA, AUTOSAR, ITRON, RTEMS

SYSGO

AN $ = s\ ReA\ EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

PikeOS Architecture

| App. | App. | APp. \olume System

Provider Partition
PikeOS : e B | s s=s====as 1
i Para-Virtualized HW Virtualized i File System ! f i
(Native, POSIX] PikeOS Native
ARINCSS3, ...) Guest OS GUEStOS s
| Linux, Android S AEI R W ccloio

User Space/

Partitions _ ; -

PikeOS System Software 1] System 1

-] Extension 1

PikeOS Microkernel
Kernel Space / . e e
Hypervisor Architecture Platform i I Kernel Level |
Support Package SupportPackage i Driver i
SoC/

Custom Hardware

SYSGO

o AN Sl o el B R EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Embedded

« Examples
« Tamagochi
« Rail signal
« ABS brake controller

 Usually does not have

ANy /AN ReAL

Lots of RAM

Beefy CPU

Keyboard and mouse
PC Case

Monitor

© SYSGO AG - INTERNAL

SYSGO

EMBEDDING INNOVATIONS

Embedded peripherals

Ethernet
» Sometimes with hardened connectors
 May be real-time

« CAN

e 12C

UART (Serial port)
JTAG for debugging

SYSGO

o AN Sl o el B R EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Safety

e System does not harm the environment
« Safe aircraft does not harm or kill people during the flight

o #flawless
» Safe backup
» Airbus A340 rudder can still be controlled mechanically
« Safe failure-mode
o “Closed” rail signal is safe
 Harmless
 In-flight entertainment

SYSGO

ANy /AN ReAL EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Safety

o # security
* but there are overlaps

o Safety needs to be certified
« More important than features or performance

SYSGO

AN $ = s\ ReA\ EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Hard-realtime

« Must meet deadlines
» Missed deadline can affect safety

 Deadlines given by
* Physics
e Car must start breaking immediately
 Hardware
» Serial port buffer size — data loss
e System design
« HW and SW must cooperate

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Real-Time Scheduling

e Lot of theory about running the tasks in correct order
« NSWEOO1- Embedded and Real Time Systems

* In practice simple thread priorities
e ONX, FreeRTOS, PikeOS, VxXWorks ...

o Often without time quantum
» Unlike Linux

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

WCET

e =\Worst-Case Execution Time

« How long will the code run?
 Willwe satisfy the deadline?
* Upper bound (worst-case) is important

« Combination of code analysis and measurement

o Jitter
o Context switches
* Interrupt duration
* Interrupt latencies

SYSGO

ANy /AN ReAL EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Enemies of Real-Time

« Shared resources
* Heap, devices, scheduler, CPU time
» Unpredictable state
» Locking
e Multi-processor
* Lockingless predictable
e Shared
 Cache
 Memory bandwidth
» Other processor units?

G‘-’GGO

AT) A RN R L TR EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL 15

More enemies

« Modern hardware
» Lazy algorithms
* Branch predictors
» Out-of-order execution
» Unpredictable pipeline
e TLB, caches
« Modern OS features
e Paging, overcommit
« Copy on Write
e Thread migration

« Complexity in general

SYSGO

ANy /AN ReAL EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Memory Management

e Sometimes no MMU at all
 FreeRTOS, some VxWorks
o Simple virtual to physical mapping
X Paging, memory mapped files, copy on write ...

v' Shared memory
v Memory protection (NX bit etc.)

 No (ab-)use of free memory for buffers

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

PikeOS Kernel Memory

 User-space needs kernel memory
 Threads
 Processes
« Memory mappings

 Pre-allocated pools

o Safe limit
 Avoids extra locks

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

User-space memory allocation

« Heap allocator problems
* Locking
» Allocator latency
* Fragmentation
» Unpredictable failures

 General rule: avoid malloc/free
« Except for initialization
* Pre-allocate everything
» Malloc/free is error prone anyway

 Or use task-specific allocator

SYSGO

ANy $ = e \Eeal EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL

Scheduling

« ARINCG653 (avionics standard) is common

« Time partitions + priorities

254

Lo SN Sy 0 aj i) |

Time Partition O

OO

O<O<O<0O

TPOis PikeOS extension

© SYSGO AG - INTERNAL

Active TP Scheme Oms 20ms 40ms 70ms 90ms 150ms
> 1 2 1 3 4
Time Partition N
Time Partition 2 O
TP
Scheduler Time Partition 1
< Pio255 | (e~
- ’7

~~~~~~ 254 ( )e( ) O

SYSGO

EMBEDDING INNOVATIONS



Multi-Processor

Threads are bound to single CPU
* Explicit migration

* PikeOS has implicitmigration on IPC

« Scheduler ready queues per-CPU

Kernel should avoid locks
Especially in real-time syscalls

If locks are fair (FIFO queue), WCET is
e num_cpus*lock held time

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Multi-Processor

* Predicting resources like caches and memory is difficult

* Disable HyperThreading
 Itis not worth the trouble

« SYSGO’s recommendation “avoid the problem”
« Better solutions are being investigated

CPU 2 Non-realtime APP1 Non-realtime APP3

CPU1 Linux Real-time APP Non-realtime APP2

SYSGO

AT ) A RN R L TR EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL 22



Other considerations

Worst-case complexity

 Hash-mapis O(1) in practice, O(n) in worst case
 AVL or RB trees are always O(log n)

 Log messages may slow you down

Keep the code small (certification)

« Sadly, it often is better to copy and specialize the code

Build time design
e Static number of FDs, buffers etc.

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Other considerations

e Choose a suitable HW
o NXP, Xilinx ...

e Control over the platform
* You are not alone on X86
« System Management Mode
* Intel Management Engine

SYSGO

ANy /AN ReAL EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Coding guidelines

« MISRA C coding standard

* EX. Rule: Initializer lists shall not contain persistent side effects

* In OS development, you have to break some of them

 EX. Rule: A conversion should not be performed between a pointer to
object and an integer type

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Mixing critical and non-critical ...

SYSGO

AN $ = s\ ReA\ EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Why microkernel?

e Separate critical and non-critical components
« MMU required

 We need to certify
* The critical components
 The kernel
o Smaller kernel = less work

 Non-critical parts can use
o Off-the-shelf software
e Linux
« => Easier development

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Why microkernel?

o Alternatives

» Certify everything

« Build two physically separate systems
e In PikeOS you can choose

o Kernel driver
» User-space driver

e Clear(er) line between levels of criticality
» Desktop PC crash is not fatal if you save your work

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Mixed criticality ex.

o Typical examples of mixed criticality:
» Control loop (critical) vs. diagnostics (non crltlcal)
o Combined Control Unit for multipl

Most critical

ASIL-D

Functional Category Hazard

Sudden Start

Driving Abrupt Acceleration

Loss of Driving Power

———
[ S S
S
Maximum 4 Wheel Braking ﬁ
e
E—
R
c————

Braking
Loss of Braking Function
Self-Steering

Steering Steering Lock

Loss of Assistance

SYSGO

L AN Sl o ael R EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Partitioning example - Airbus A400M

_____

Level C Level D

Winches,
Crane

9 Applications
incl.
Waste&Water

Pictures: Rheimetall Defense A400M G Q GGO
L~ SN Sy - SRl S-S e B G e, S Sl EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL



User-space drivers

« Modern hardwarelooks like a memory (MMIO)
« Can be mapped to user-space using MMU

 PikeOS interrupt handler is a user-space thread
« with regular scheduling

for(;;) {
wait _for_interrupt();
/* handle the interrupt */

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Interrupt handling

* Interrupt handling sequence:
1. HW runs kernel’s interrupt handler
Kernel masks (disables) the interrupt
Unblocks the thread blocked in wait_for_interrupt
Thread handles interrupt
Calls wait_for _interrupt
Kernel blocks the thread
Unmasks the interrupt
+ variations for different platforms

o Solaris, FreeBSD and others also run interrupt routines in
threaded context

N o O A W

SYSGO

ANy $ = e \Eeal EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




IOMMU

Q: Is MMU enough to isolate drivers?
A: No, because of DMA

The driver can tell device to read/write memory
 Bypasses CPU MMU

We can

* Ignore the problem
e Disable DMA

e Use IOMMU

SYSGO

EMBEDDING INNOVATIONS

L AN S ] Ll

© SYSGO AG - INTERNAL 33



IOMMU

e [OMMU is MMU for the Non-CPU Bus Masters

 Available on modern X86, ARM and PowerPC
» Different hardware same goal

« Commonly used for PCI pass-throught

SYSGO

ANy /AN ReAL EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Why virtualization?

To use Linux
e ... and Linux device drivers
o Safely

Offered by
e SYSGO

e GreenHills
e VXWorks ...

Minimal hypervisor part of the kernel

VMs subject to access rights
e ... and scheduling

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Virtualization comparison

e PikeOS offers

« Para-virtualization (similar to User-mode Linux)
 HW Assisted virtualization

Hardware Virtualization Para-virtualization
A

\ A

: P4Linux
QEMU HWVIRT Manager Linux -

SYSGO

EMBEDDING INNOVATIONS

[

© SYSGO AG - INTERNAL 36



P4Linux

 Linux kernel as a PikeOS process

« Runs unmodified Linux executables

* Inspired by User Mode Linux

* Virtual CPUs backed by PikeOS threads

e Linux processes backed by PikeOS processes

« sysemu_enter syscall to “run the userspace”
» Use address space of other PikeOS process
« Start executing code in this context
* Returns control on exceptions, privileged instructions etc.
» Also returns to the old address space

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




P4Linux

Full Linux memory management

« Paging, CoW, memory mappedfiles ...

« Page tables simulated by PikeOS processes

Linux kernel not mapped in user-space at all
« Copes surprisingly well with it

Para-virtual drivers for PikeOS devices

Code to access passed-through devices

 Most drivers are well behaved and use proper APIs to map device memaory
and handle interrupts

e => can be used unchanged
* You can play OpenArena on an Intel GPU

SYSGO

L~ AN S e L)Y EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Where can | get PikeOS?

« Not Commercial, Off-the-shelf product
o Typical workflow:

1.
2.

3.
4.
5.

Customer evaluates the HW (System on Chip) and SW (the OS)

We provide PikeOS either for QEMU or a SoC Development board and
some training or support

Customer builds a custom board for that SoC, with special peripherals
W e provide OS support for his custom board
We provide certification documents (if necessary)

e Best for mixed-criticality certified usage. Alternatives:
o Linux with RT patches? FreeRTOS?
» Lots of other RTOSes

Lo SN Sy 0 aj i) |

© SYSGO AG - INTERNAL

SYSGO

EMBEDDING INNOVATIONS




Certification/safety |

Safety: ECSS-E-40 - Space

»Software Engineering®

Safety: 1ISO 26262 - Automotive
»Road vehicles - Functional Safety*

Safety: DO-178C - Avionics

»Software Considerations in Airborne Systems and
Equipment Certification*

Safety: EN 50128/29 - Railway
»Software for Traincontroland —management systems*

Safety: IEC 61508 - Industry

~Functional Safety of Electrical / Electronic/
Programmable Electronic Safety-related Systems*

Security: SAR - Avionics
»Airbus Security Standard*

Security: ISO/IEC 15408-1/2/3 — Industry

»common Criteria for Information Technology Security
Evaluation*

Lo SN Sy 0 aj i) |

© SYSGO AG - INTERNAL

We provide Certification Kits
for PikeOSfor awiderange

of industrydomains and up
tothehighestlevels

Automotive Safety Integrity Level

D

C

B [A]

Design Assurance Level

D

C

B [A]

Safety Integrity Level

1

2

3 [4]

Safety Integrity Level

1

2

3 |4

Security Assurance Level

1

2

3 4]

Evaluation Assurance Level

1

2

3[4 A

SYSGO

T $ EMBEDDING INNOVATIONS



Certification/safety |l

e DO178, ...
e DO178 DAL C (medium)— 2-3 verification engineers on 1 developer

e Requirement-based testing
e High-level requirements, interface requirements, low-level requirements

e Traceability between all levels of requirements, code and tests is essential
» Code is annotated (by corresponding requirement name)

o 80% of verification efforts writing automated tests
e Minority of tests can be manual or rarely just code analysis
e From DAL C all code must be covered by tests

e The rest formal reviews (of documents, code, tests), WCET analysis, stack
analysis

¢ Independence between development and verification (verification engineer
cannot commitinto the verified code, ...)

e Bunch of other documents (plans, standards, ...)

SYSGO

EMBEDDING INNOVATIONS

oSN Sy ) Ll

© SYSGO AG - INTERNAL 41



Certification/security |

e Connecting embedded devices to internet (internet of things)
e Increasing trend in the last decade

e Somewhatlimited know-how about how to secure embedded software
among device manufacturers

e Connecting safety-critical software to internet extends the possibility to
disable the device by a third-party
e How muchis this real today?

e Jeep Cherokie, 2015, documented a possibility of disabling brakes over
Internet (cellular phone connection)

e http://ilimatics.com/Remote%20Car%20Hacking.pdf

SYSGO

EMBEDDING INNOVATIONS

oSN Sy ) Ll

© SYSGO AG - INTERNAL 42


http://illmatics.com/Remote%20Car%20Hacking.pdf

Certification/security |

e Common Ciriteria, Security Target
e Trusted world (kernel, PSP, some patrtitions)
e Untrusted world (partitions with low security demands (e.g. Linux))

o Well-defined interface between the two worlds

e Attack surface syscallsto kernel, ioctl and other communication channels
between the trusted and untrusted world

e Verification approach

e Some safety requirements marked as security relevant, these are then tested
more extensively or just differently

e Vulnerability analysis instead of some safety-related analyses

e Security board monitors reported vulnerabilities for other operating
systems

e Fuzztests
e Increased demands for physical security

SYSGO

L AN Sl o ael R EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL 43




Possible topics for intership, thesis or project

e Applied research topics (thesis, research paper)
e |IATO134 MPLockingProtocol
e |[ATO136 EvaluationOfFormalMethodsToolsForVVDepartment
e |AT0104 SchedulerFormalVerificationDiplomaThesis

¢ Implementation topics (student project, thesis)
e |ATO133 PSPraspberrypi3
o |IAT0132 IPT-PikeOs-support
e |AT0135 IntegrateLW TinCodeo

SYSGO

L AN Sl o ael R EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Examples of high-level requirements

e The Ethernet driver shall forward and separate traffic between up to 3
physical ports (VLANS).

e Aresource partition shall have a statically configurable set of memory
requirements which specify physical memory, memory mapped 1I/O and
port mapped /O regions assigned to the partition.

o PikeOS shall mask an interrupt source if no thread is registered as
handler for this interrupt.

SYSGO

o AN Sl o el B R EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL 45




Examples of interface requirements

e vm_write() shall write an Ethernet message from the buffer "buff" to the
device and return the number of bytes written in "written_size" and
return P4 _E OK.

e The driver shall use interrupt specified by "Int" property.

e The driver shall raise a HM error of type P4 HM_TYPE_P4 E if the GEM
hardware has unsupported version.

SYSGO

L AN Sl o ael R EMBEDDING INNOVATIONS

© SYSGO AG - INTERNAL




Examples of low-level requirements

e anisUDP_checkChksum() shall return ANIS_ERR_OK if the computed
checksum matches the valuein the header.

e anisUDP_send() shall copy the message payload into the allocated
buffer objects, prefixing the message with the UDP header and leaving
sufficient space to prefix the IP header.

e anisIGMP_sendLeave() returns ANIS_ERR_SPACE if there is no internal
buffer to store the message to send.

SYSGO

EMBEDDING INNOVATIONS

L AN S ] Ll

© SYSGO AG - INTERNAL 47



Testsuite example

e TS ANIS
e ANIS = UDP/IP network stack certified for DAL C
e Low-level testsuite
e 694 test cases
e 587 interface requirements, 755 design requirements
e 125000 LOC of C code
e > 1000 pages of test suite description
e ~ 4000 manhours
e ANIS itself has 80 000 LOC of C code
e One test case 1-3 manhours in simplest cases; manweeks in

MOost complex cases
SYSGO

EMBEDDING INNOVATIONS

L AN S ] Ll

© SYSGO AG - INTERNAL 48



	Real-Time, Safe and Certified OS
	Introduction
	Certification
	PikeOS
	PikeOS technical
	Personalities
	Slide Number 7
	Embedded
	Embedded peripherals
	Safety
	Safety
	Hard-realtime
	Real-Time Scheduling
	WCET
	Enemies of Real-Time
	More enemies
	Memory Management
	PikeOS Kernel Memory
	User-space memory allocation
	Scheduling
	Multi-Processor
	Multi-Processor
	Other considerations
	Other considerations
	Coding guidelines
	Mixing critical and non-critical …
	Why microkernel?
	Why microkernel?
	Mixed criticality ex.
	Partitioning example - Airbus A400M�
	User-space drivers
	Interrupt handling
	IOMMU
	IOMMU
	Why virtualization?
	Virtualization comparison
	P4Linux
	P4Linux
	Where can I get PikeOS?
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

