
© SYSGO AG · INTERNAL 1

Real-Time, Safe and Certified OS

Roman Kapl <rka@sysgo.com>
drivers, customer projects, development

Tomas Martinec <rka@sysgo.com>
testing and certification

© SYSGO AG · INTERNAL 2

Introduction

• PikeOS – real-time, safety certified OS
• Desktop and Server vs.
• Embedded
• Real-Time
• Safety-Critical
• Certified

• Differences
• Scheduling
• Resource management
• Features
• Development

© SYSGO AG · INTERNAL 3

Certification

• Testing
• Analysis
• Lot of time
• Even more paper
• Required for safety-critical systems

• Trains
• Airplanes

© SYSGO AG · INTERNAL 4

PikeOS

• Embedded, real-time, certified OS
• ~150 people (not just engineers)
• Rail
• Avionics
• Space
• This presentation is not about PikeOS specifically

© SYSGO AG · INTERNAL 5

PikeOS technical

• Microkernel
• Inspired by L4

• Memory protection (MMU)
• More complex than FreeRTOS

• Virtualization hypervisor
• X86, ARM, SPARC, PowerPC
• Eclipse IDE for development

© SYSGO AG · INTERNAL 6

Personalities

• General
• POSIX
• Linux

• Domain specific
• ARINC653
• PikeOS native

• Other
• Ada, RT JAVA, AUTOSAR, ITRON, RTEMS

© SYSGO AG · INTERNAL 7

PikeOS System Software

Volume
Provider

Device Driver

File System

App.App.

Para-Virtualized
Guest OS

Linux, Android

App.App.

PikeOS
(Native, POSIX,
ARINC653, ...)

App.App.

HW Virtualized
Guest OS

Linux, Android

System
Partition

PikeOS Native

PikeOS Architecture

PikeOS Microkernel

Platform
Support Package

Architecture
Support Package

System
ExtensionSystem

Extension

Kernel Level
Driver

User Space /
Partitions

Kernel Space /
Hypervisor

Hardware
CPU1 Serial Ethernet GraphicsCAN ...SoC /

Custom Hardware

© SYSGO AG · INTERNAL 8

Embedded

• Examples
• Tamagochi
• Rail signal
• ABS brake controller

• Usually does not have
• Lots of RAM
• Beefy CPU
• Keyboard and mouse
• PC Case
• Monitor

© SYSGO AG · INTERNAL 9

Embedded peripherals

• Ethernet
• Sometimes with hardened connectors
• May be real-time

• CAN
• I2C
• UART (Serial port)
• JTAG for debugging

© SYSGO AG · INTERNAL 10

Safety

• System does not harm the environment
• Safe aircraft does not harm or kill people during the flight

• ≠ flawless
• Safe backup

• Airbus A340 rudder can still be controlled mechanically
• Safe failure-mode

• “Closed” rail signal is safe
• Harmless

• In-flight entertainment

© SYSGO AG · INTERNAL 11

Safety

• ≠ security
• but there are overlaps

• Safety needs to be certified
• More important than features or performance

© SYSGO AG · INTERNAL 12

Hard-realtime

• Must meet deadlines
• Missed deadline can affect safety

• Deadlines given by
• Physics

• Car must start breaking immediately
• Hardware

• Serial port buffer size – data loss
• System design

• HW and SW must cooperate

© SYSGO AG · INTERNAL 13

Real-Time Scheduling

• Lot of theory about running the tasks in correct order
• NSWE001 - Embedded and Real Time Systems

• In practice simple thread priorities
• QNX, FreeRTOS, PikeOS, VxWorks …

• Often without time quantum
• Unlike Linux

© SYSGO AG · INTERNAL 14

WCET

• =Worst-Case Execution Time
• How long will the code run?

• Will we satisfy the deadline?
• Upper bound (worst-case) is important

• Combination of code analysis and measurement
• Jitter

• Context switches
• Interrupt duration
• Interrupt latencies

© SYSGO AG · INTERNAL 15

Enemies of Real-Time

• Shared resources
• Heap, devices, scheduler, CPU time
• Unpredictable state
• Locking

• Multi-processor
• Locking less predictable
• Shared

• Cache
• Memory bandwidth
• Other processor units?

© SYSGO AG · INTERNAL 16

More enemies

• Modern hardware
• Lazy algorithms
• Branch predictors
• Out-of-order execution

• Unpredictable pipeline
• TLB, caches

• Modern OS features
• Paging, overcommit
• Copy on Write
• Thread migration

• Complexity in general

© SYSGO AG · INTERNAL 17

Memory Management

• Sometimes no MMU at all
• FreeRTOS, some VxWorks

• Simple virtual to physical mapping
X Paging, memory mapped files, copy on write …
 Shared memory
 Memory protection (NX bit etc.)

• No (ab-)use of free memory for buffers

© SYSGO AG · INTERNAL 18

PikeOS Kernel Memory

• User-space needs kernel memory
• Threads
• Processes
• Memory mappings

• Pre-allocated pools
• Safe limit
• Avoids extra locks

© SYSGO AG · INTERNAL 19

User-space memory allocation

• Heap allocator problems
• Locking
• Allocator latency
• Fragmentation
• Unpredictable failures

• General rule: avoid malloc/free
• Except for initialization
• Pre-allocate everything
• Malloc/free is error prone anyway

• Or use task-specific allocator

© SYSGO AG · INTERNAL 20

Scheduling

• ARINC653 (avionics standard) is common
• Time partitions + priorities

...

Time Partition N

...

Time Partition 2

...

Time Partition 1

1 2 1 3 4

TP
Scheduler

Prio 255

254

255

0

...

Time Partition 0

254

0

Active TP Scheme 0ms 20ms 40ms 70ms 90ms 150ms

TP0 is PikeOS extension

© SYSGO AG · INTERNAL 21

Multi-Processor

• Threads are bound to single CPU
• Explicit migration
• PikeOS has implicit migration on IPC
• Scheduler ready queues per-CPU

• Kernel should avoid locks
• Especially in real-time syscalls
• If locks are fair (FIFO queue), WCET is

• num_cpus * lock_held_time

© SYSGO AG · INTERNAL 22

Multi-Processor

• Predicting resources like caches and memory is difficult
• Disable HyperThreading

• it is not worth the trouble
• SYSGO’s recommendation “avoid the problem”
• Better solutions are being investigated

Non-realtime APP1

Linux Real-time APP Non-realtime APP2

Non-realtime APP3Idle

CPU 1

CPU 2

© SYSGO AG · INTERNAL 23

Other considerations

• Worst-case complexity
• Hash-map is O(1) in practice, O(n) in worst case
• AVL or RB trees are always O(log n)

• Log messages may slow you down
• Keep the code small (certification)

• Sadly, it often is better to copy and specialize the code
• Build time design

• Static number of FDs, buffers etc.

© SYSGO AG · INTERNAL 24

Other considerations

• Choose a suitable HW
• NXP, Xilinx …

• Control over the platform
• You are not alone on X86
• System Management Mode
• Intel Management Engine

© SYSGO AG · INTERNAL 25

Coding guidelines

• MISRA C coding standard
• Ex. Rule: Initializer lists shall not contain persistent side effects

• In OS development, you have to break some of them
• Ex. Rule: A conversion should not be performed between a pointer to

object and an integer type

© SYSGO AG · INTERNAL 26

Mixing critical and non-critical …

© SYSGO AG · INTERNAL 27

Why microkernel?

• Separate critical and non-critical components
• MMU required

• We need to certify
• The critical components
• The kernel
• Smaller kernel = less work

• Non-critical parts can use
• Off-the-shelf software
• Linux
• => Easier development

© SYSGO AG · INTERNAL 28

Why microkernel?

• Alternatives
• Certify everything
• Build two physically separate systems

• In PikeOS you can choose
• Kernel driver
• User-space driver

• Clear(er) line between levels of criticality
• Desktop PC crash is not fatal if you save your work

© SYSGO AG · INTERNAL 29

Mixed criticality ex.

• Typical examples of mixed criticality:
• Control loop (critical) vs. diagnostics (non-critical)
• Combined Control Unit for multiple functions in car

Least critical Most critical

© SYSGO AG · INTERNAL 30

Hardware

PikeOS Virtualization Platform

Level B

Ramp, Doors,
Aerial Delivery,

Cargo Locks
...

Level B

Graphics
OpenGL

GUI
HMI

Level C

Winches,
Crane

....

Level D

9 Applications
incl.

Waste&Water

Pictures: Rheimetall Defense A400M

Partitioning example - Airbus A400M

© SYSGO AG · INTERNAL 31

User-space drivers

• Modern hardware looks like a memory (MMIO)
• Can be mapped to user-space using MMU
• PikeOS interrupt handler is a user-space thread

• with regular scheduling

for(;;) {

wait_for_interrupt();

/* handle the interrupt */

}

© SYSGO AG · INTERNAL 32

Interrupt handling

• Interrupt handling sequence:
1. HW runs kernel’s interrupt handler
2. Kernel masks (disables) the interrupt
3. Unblocks the thread blocked in wait_for_interrupt
4. Thread handles interrupt
5. Calls wait_for_interrupt
6. Kernel blocks the thread
7. Unmasks the interrupt

+ variations for different platforms
• Solaris, FreeBSD and others also run interrupt routines in

threaded context

© SYSGO AG · INTERNAL 33

IOMMU

• Q: Is MMU enough to isolate drivers?
• A: No, because of DMA
• The driver can tell device to read/write memory

• Bypasses CPU MMU
• We can

• Ignore the problem
• Disable DMA
• Use IOMMU CPU

Disk

RAM

BUS
(PCI-e …)

Please read disk, store
data at 0xDEADBEEF

Please write
“kernel_shellcode.bin”

to 0xDEADBEEF

M
M
U

© SYSGO AG · INTERNAL 34

IOMMU

• IOMMU is MMU for the Non-CPU Bus Masters
• Available on modern X86, ARM and PowerPC

• Different hardware same goal
• Commonly used for PCI pass-throught

© SYSGO AG · INTERNAL 35

Why virtualization?

• To use Linux
• … and Linux device drivers
• Safely

• Offered by
• SYSGO
• GreenHills
• VxWorks …

• Minimal hypervisor part of the kernel
• VMs subject to access rights

• … and scheduling

© SYSGO AG · INTERNAL 36

Virtualization comparison

• PikeOS offers
• Para-virtualization (similar to User-mode Linux)
• HW Assisted virtualization

Linux Kernel

KVM

QEMU

Guest Linux

PikeOS

Hypervisor

HWVIRT Manager

Guest Linux

PikeOS

SysEmu

P4Linux

Linux Kernel

PTrace

User-mode
Linux

Hardware Virtualization Para-virtualization

© SYSGO AG · INTERNAL 37

P4Linux

• Linux kernel as a PikeOS process
• Runs unmodified Linux executables
• Inspired by User Mode Linux
• Virtual CPUs backed by PikeOS threads
• Linux processes backed by PikeOS processes
• sysemu_enter syscall to “run the userspace”

• Use address space of other PikeOS process
• Start executing code in this context
• Returns control on exceptions, privileged instructions etc.

• Also returns to the old address space

© SYSGO AG · INTERNAL 38

P4Linux

• Full Linux memory management
• Paging, CoW, memory mapped files …
• Page tables simulated by PikeOS processes

• Linux kernel not mapped in user-space at all
• Copes surprisingly well with it

• Para-virtual drivers for PikeOS devices
• Code to access passed-through devices

• Most drivers are well behaved and use proper APIs to map device memory
and handle interrupts

• => can be used unchanged
• You can play OpenArena on an Intel GPU

© SYSGO AG · INTERNAL 39

Where can I get PikeOS?

• Not Commercial, Off-the-shelf product
• Typical workflow:

1. Customer evaluates the HW (System on Chip) and SW (the OS)
2. We provide PikeOS either for QEMU or a SoC Development board and

some training or support
3. Customer builds a custom board for that SoC, with special peripherals
4. We provide OS support for his custom board
5. We provide certification documents (if necessary)

• Best for mixed-criticality certified usage. Alternatives:
• Linux with RT patches? FreeRTOS?
• Lots of other RTOSes

© SYSGO AG · INTERNAL 40

Certification/safety I

Safety: ISO 26262 - Automotive

Safety: DO-178C - Avionics

„Road vehicles - Functional Safety“

„Software Considerations in Airborne Systems and
Equipment Certification“

Safety: EN 50128/29 - Railway
„Software for Traincontrol and –management systems“

Safety: IEC 61508 - Industry
„Functional Safety of Electrical / Electronic /
Programmable Electronic Safety-related Systems“

Security: ISO/IEC 15408-1/2/3 – Industry
„Common Criteria for Information Technology Security
Evaluation“

Security: SAR - Avionics
„Airbus Security Standard“

D C B A

D C B A

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4 5 6 7

Safety Integrity Level

Design Assurance Level

Automotive Safety Integrity Level

Safety Integrity Level

Security Assurance Level

Evaluation Assurance Level

Safety: ECSS-E-40 - Space
„Software Engineering“

We provide Certification Kits
for PikeOS for a wide range
of industry domains and up
to the highest levels

© SYSGO AG · INTERNAL 41

Certification/safety II

• DO178, …
• DO178 DAL C (medium) – 2-3 verification engineers on 1 developer

• Requirement-based testing
• High-level requirements, interface requirements, low-level requirements

• Traceability between all levels of requirements, code and tests is essential
• Code is annotated (by corresponding requirement name)

• 80% of verification efforts writing automated tests
• Minority of tests can be manual or rarely just code analysis
• From DAL C all code must be covered by tests

• The rest formal reviews (of documents, code, tests), WCET analysis, stack
analysis

• Independence between development and verification (verification engineer
cannot commit into the verified code, …)

• Bunch of other documents (plans, standards, …)

© SYSGO AG · INTERNAL 42

Certification/security I

• Connecting embedded devices to internet (internet of things)
• Increasing trend in the last decade
• Somewhat limited know-how about how to secure embedded software

among device manufacturers
• Connecting safety-critical software to internet extends the possibility to

disable the device by a third-party
• How much is this real today?
• Jeep Cherokie, 2015, documented a possibility of disabling brakes over

Internet (cellular phone connection)
• http://illmatics.com/Remote%20Car%20Hacking.pdf

http://illmatics.com/Remote%20Car%20Hacking.pdf

© SYSGO AG · INTERNAL 43

Certification/security II

• Common Criteria, Security Target
• Trusted world (kernel, PSP, some partitions)
• Untrusted world (partitions with low security demands (e.g. Linux))
• Well-defined interface between the two worlds
• Attack surface syscalls to kernel, ioctl and other communication channels

between the trusted and untrusted world
• Verification approach

• Some safety requirements marked as security relevant, these are then tested
more extensively or just differently

• Vulnerability analysis instead of some safety-related analyses
• Security board monitors reported vulnerabilities for other operating

systems
• Fuzz tests
• Increased demands for physical security

© SYSGO AG · INTERNAL 44

Possible topics for intership, thesis or project

• Applied research topics (thesis, research paper)
• IAT0134 MPLockingProtocol
• IAT0136 EvaluationOfFormalMethodsToolsForVVDepartment
• IAT0104 SchedulerFormalVerificationDiplomaThesis

• Implementation topics (student project, thesis)
• IAT0133 PSPraspberrypi3
• IAT0132 IPT-PikeOs-support
• IAT0135 IntegrateLWTinCodeo

© SYSGO AG · INTERNAL 45

Examples of high-level requirements

• The Ethernet driver shall forward and separate traffic between up to 3
physical ports (VLANs).

• A resource partition shall have a statically configurable set of memory
requirements which specify physical memory, memory mapped I/O and
port mapped I/O regions assigned to the partition.

• PikeOS shall mask an interrupt source if no thread is registered as
handler for this interrupt.

© SYSGO AG · INTERNAL 46

Examples of interface requirements

• vm_write() shall write an Ethernet message from the buffer "buff" to the
device and return the number of bytes written in "written_size" and
return P4_E_OK.

• The driver shall use interrupt specified by "Int" property.

• The driver shall raise a HM error of type P4_HM_TYPE_P4_E if the GEM
hardware has unsupported version.

© SYSGO AG · INTERNAL 47

Examples of low-level requirements

• anisUDP_checkChksum() shall return ANIS_ERR_OK if the computed
checksum matches the value in the header.

• anisUDP_send() shall copy the message payload into the allocated
buffer objects, prefixing the message with the UDP header and leaving
sufficient space to prefix the IP header.

• anisIGMP_sendLeave() returns ANIS_ERR_SPACE if there is no internal
buffer to store the message to send.

© SYSGO AG · INTERNAL 48

Testsuite example

• TS_ANIS
• ANIS = UDP/IP network stack certified for DAL C
• Low-level testsuite
• 694 test cases
• 587 interface requirements, 755 design requirements
• 125 000 LOC of C code
• > 1000 pages of test suite description
• ~ 4000 manhours

• ANIS itself has 80 000 LOC of C code
• One test case 1-3 manhours in simplest cases; manweeks in

most complex cases

	Real-Time, Safe and Certified OS
	Introduction
	Certification
	PikeOS
	PikeOS technical
	Personalities
	Slide Number 7
	Embedded
	Embedded peripherals
	Safety
	Safety
	Hard-realtime
	Real-Time Scheduling
	WCET
	Enemies of Real-Time
	More enemies
	Memory Management
	PikeOS Kernel Memory
	User-space memory allocation
	Scheduling
	Multi-Processor
	Multi-Processor
	Other considerations
	Other considerations
	Coding guidelines
	Mixing critical and non-critical …
	Why microkernel?
	Why microkernel?
	Mixed criticality ex.
	Partitioning example - Airbus A400M�
	User-space drivers
	Interrupt handling
	IOMMU
	IOMMU
	Why virtualization?
	Virtualization comparison
	P4Linux
	P4Linux
	Where can I get PikeOS?
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

