
Decision Procedures and Verification

Martin Blicha

Charles University

5.3.2018



Algorithms for Propositional Satisfiability



Why study propositional satisfiability?

I Interesting from both theoretical and practical perspective

I First problem to be proven NP-complete [Cook ’71, Levin ’73]
I Many industrial problems encoded as SAT

I Hardware and software verification
I Automated planning - Planning as Satisfiability
I Product configuration
I ...



Progress in SAT solving

Image source: Decision Procedures. Kroening D., Strichman O.



Progress in SAT solving

Image source: Decision Procedures. Kroening D., Strichman O.



Approaches to SAT solving

DPLL framework

I complete procedure

I very efficient for instance
with structure

I important when proof of
unsatiafiability required
(e.g. verification)

Stochastic search

I incomplete procedure

I better at solving random
satisfiable instances

I can be faster to obtain
satisfying assignment



Approaches to SAT solving

DPLL framework

I complete procedure

I very efficient for instance
with structure

I important when proof of
unsatiafiability required
(e.g. verification)

Stochastic search

I incomplete procedure

I better at solving random
satisfiable instances

I can be faster to obtain
satisfying assignment



Approaches to SAT solving

DPLL framework

I complete procedure

I very efficient for instance
with structure

I important when proof of
unsatiafiability required
(e.g. verification)

Stochastic search

I incomplete procedure

I better at solving random
satisfiable instances

I can be faster to obtain
satisfying assignment



Problems of naive satisfiability algorithm

Naive algorithm

Enumerate all assignments. Check if formula is satisfied under any
of them.

I Unnecessary repetition of partial assignment leading to
conflict.

I No information preserved between tries of different
assignments

I Lots of unnecessary work being done over and over again.



Problems of naive satisfiability algorithm

Naive algorithm

Enumerate all assignments. Check if formula is satisfied under any
of them.

I Unnecessary repetition of partial assignment leading to
conflict.

I No information preserved between tries of different
assignments

I Lots of unnecessary work being done over and over again.



DPLL algorithm - overview

I DPLL algorithm (Davis-Putnam-Loveland-Logemann, 1962)

I Input formula assumed to be in CNF

I Search in a tree of partial assignments

I Backtracking on conflict

I Unit propagation prunes the tree



Basic concepts

Definition (state of a clause)

Let α : V → {True,False} be an assignment of variables from V.
Then generalization of α on a clauses of set of variables V ′ ⊇ V is
α? : {c | c is a clause over V ′} → {True,False,Undef }.

I c is satisfied, α?(c) = True, if at least one literal in c is
satisfied by α

I c is conflicting, α?(c) = False, if all literals are falsified by α

I c is unresolved, α?(c) = Undef , otherwise.

Definition (unit clause)

A clause c is unit under assignment α if it is not satisfied and all
but one literals are falsified by α.



Basic concepts

Definition (state of a clause)

Let α : V → {True,False} be an assignment of variables from V.
Then generalization of α on a clauses of set of variables V ′ ⊇ V is
α? : {c | c is a clause over V ′} → {True,False,Undef }.

I c is satisfied, α?(c) = True, if at least one literal in c is
satisfied by α

I c is conflicting, α?(c) = False, if all literals are falsified by α

I c is unresolved, α?(c) = Undef , otherwise.

Definition (unit clause)

A clause c is unit under assignment α if it is not satisfied and all
but one literals are falsified by α.



Basic concepts

Example

Let α be {x1 7→ 1, x2 7→ 0, x4 7→ 1}. Then

I x1 ∨ x3 ∨ ¬x4 is satisfied,
I ¬x1 ∨ x2 is conflicting,
I ¬x1 ∨ ¬x4 ∨ x3 is unit,
I ¬x1 ∨ x3 ∨ x5 is unresolved.

Definition (unit clause rule, antecedent clause)

Given a partial assignment α and a clause c that is unit under α, α
must be extended so that is satisfies the last unassigned literal l .
We say that l is implied by c (under α) and we call c the
antecedent of l .

Example

The clause c = ¬x1 ∨ ¬x4 ∨ x3 and the partial assignment
{x1 7→ 1, x4 7→ 1} imply x3 7→ 1 and Antecedent(x3) = c .



Basic concepts

Example

Let α be {x1 7→ 1, x2 7→ 0, x4 7→ 1}. Then

I x1 ∨ x3 ∨ ¬x4 is satisfied,
I ¬x1 ∨ x2 is conflicting,
I ¬x1 ∨ ¬x4 ∨ x3 is unit,
I ¬x1 ∨ x3 ∨ x5 is unresolved.

Definition (unit clause rule, antecedent clause)

Given a partial assignment α and a clause c that is unit under α, α
must be extended so that is satisfies the last unassigned literal l .
We say that l is implied by c (under α) and we call c the
antecedent of l .

Example

The clause c = ¬x1 ∨ ¬x4 ∨ x3 and the partial assignment
{x1 7→ 1, x4 7→ 1} imply x3 7→ 1 and Antecedent(x3) = c .



Basic concepts

Example

Let α be {x1 7→ 1, x2 7→ 0, x4 7→ 1}. Then

I x1 ∨ x3 ∨ ¬x4 is satisfied,
I ¬x1 ∨ x2 is conflicting,
I ¬x1 ∨ ¬x4 ∨ x3 is unit,
I ¬x1 ∨ x3 ∨ x5 is unresolved.

Definition (unit clause rule, antecedent clause)

Given a partial assignment α and a clause c that is unit under α, α
must be extended so that is satisfies the last unassigned literal l .
We say that l is implied by c (under α) and we call c the
antecedent of l .

Example

The clause c = ¬x1 ∨ ¬x4 ∨ x3 and the partial assignment
{x1 7→ 1, x4 7→ 1} imply x3 7→ 1 and Antecedent(x3) = c .



The power of unit propagation

I The goal is to satisfy a CNF formula.

I (¬u ∨ w) ∧ (u ∨ v) ∧ (u) ∧ (¬w ∨ z); α = {}
I (u) is unit under α



The power of unit propagation

I The goal is to satisfy a CNF formula.

I (¬u ∨ w) ∧ (u ∨ v) ∧ (u) ∧ (¬w ∨ z); α = {u}
I (¬u ∨ w) is unit under α



The power of unit propagation

I The goal is to satisfy a CNF formula.

I (¬u ∨ w) ∧ (u ∨ v) ∧ (u) ∧ (¬w ∨ z);
α = {u,w}

I (¬w ∨ z) is unit under α



The power of unit propagation

I The goal is to satisfy a CNF formula.

I (¬u ∨ w) ∧ (u ∨ v) ∧ (u) ∧ (¬w ∨ z);
α = {u,w , z}

I All clauses are satisfied by α.

Solved by unit propagation. No decisions
needed.



DPLL algorithm

1: procedure DPLL(ϕ, α)
2: if ∀c ∈ ϕ then c is satisfied by α return TRUE

3: if ∃c ∈ ϕ then c is conflicting under α return FALSE

4: α← α ∪ UNIT -PROPAGATION()
5: x ← SELECT -VAR()
6: if DPLL(α ∪ {x 7→ 1}) then return TRUE

7: if DPLL(α ∪ {x 7→ 0}) then return TRUE

8: return FALSE



DPLL algorithm
Notes

I UNIT-PROPAGATION applies unit clause rule until no clauses
are unit

I After unit propagation, assignment can be extended with pure
literals.

I But this is not used in practice (too costly).

I The phase of unit propagation possibly with pure literals is
often referred to as BCP - Boolean constraint propagation

I SELECT-VAR selects an unassigned variable. Both values of
the variable are tried.



DPLL - running example

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2∨¬x4)∧(x3∨x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨ ¬x3) ∧

(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3∨x4)

1. Decide α(x1) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

2. Decide α(x2) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

unit clause

∧(x3∨x4)

3. Derive α(x4) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3 ∨ x4)︸ ︷︷ ︸

unit clause

4. Derive α(x3) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

α = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} is a satisfying assignment of ϕ



DPLL - running example

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2∨¬x4)∧(x3∨x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨ ¬x3) ∧

(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3∨x4)

1. Decide α(x1) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

2. Decide α(x2) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

unit clause

∧(x3∨x4)

3. Derive α(x4) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3 ∨ x4)︸ ︷︷ ︸

unit clause

4. Derive α(x3) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

α = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} is a satisfying assignment of ϕ



DPLL - running example

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2∨¬x4)∧(x3∨x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨ ¬x3) ∧

(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3∨x4)

1. Decide α(x1) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

2. Decide α(x2) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

unit clause

∧(x3∨x4)

3. Derive α(x4) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3 ∨ x4)︸ ︷︷ ︸

unit clause

4. Derive α(x3) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

α = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} is a satisfying assignment of ϕ



DPLL - running example

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2∨¬x4)∧(x3∨x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨ ¬x3) ∧

(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3∨x4)

1. Decide α(x1) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

2. Decide α(x2) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

unit clause

∧(x3∨x4)

3. Derive α(x4) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3 ∨ x4)︸ ︷︷ ︸

unit clause

4. Derive α(x3) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

α = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} is a satisfying assignment of ϕ



DPLL - running example

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2∨¬x4)∧(x3∨x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨ ¬x3) ∧

(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3∨x4)

1. Decide α(x1) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

2. Decide α(x2) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

unit clause

∧(x3∨x4)

3. Derive α(x4) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3 ∨ x4)︸ ︷︷ ︸

unit clause

4. Derive α(x3) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

α = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} is a satisfying assignment of ϕ



DPLL - running example

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2∨¬x4)∧(x3∨x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨ ¬x3) ∧

(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3∨x4)

1. Decide α(x1) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

2. Decide α(x2) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

unit clause

∧(x3∨x4)

3. Derive α(x4) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3 ∨ x4)︸ ︷︷ ︸

unit clause

4. Derive α(x3) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

α = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} is a satisfying assignment of ϕ



DPLL - running example

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2∨¬x4)∧(x3∨x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨ ¬x3) ∧

(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3∨x4)

1. Decide α(x1) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

2. Decide α(x2) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

unit clause

∧(x3∨x4)

3. Derive α(x4) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3 ∨ x4)︸ ︷︷ ︸

unit clause

4. Derive α(x3) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

α = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} is a satisfying assignment of ϕ



DPLL - running example

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2∨¬x4)∧(x3∨x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨ ¬x3) ∧

(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3∨x4)

1. Decide α(x1) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

2. Decide α(x2) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

unit clause

∧(x3∨x4)

3. Derive α(x4) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3 ∨ x4)︸ ︷︷ ︸

unit clause

4. Derive α(x3) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

α = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} is a satisfying assignment of ϕ



DPLL - running example

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2∨¬x4)∧(x3∨x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨ ¬x3) ∧

(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3∨x4)

1. Decide α(x1) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

2. Decide α(x2) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2 ∨ ¬x4)︸ ︷︷ ︸

unit clause

∧(x3∨x4)

3. Derive α(x4) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3 ∨ x4)︸ ︷︷ ︸

unit clause

4. Derive α(x3) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

α = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} is a satisfying assignment of ϕ



Deficiencies of DPLL

ψ = (x1∨x3∨x4)∧ (¬x1∨x2∨x3)∧ (¬x1∨¬x3)∧ (¬x2∨¬x4)∧ (x3∨x4)∧
(¬y1 ∨ y3 ∨ y4) ∧ (¬y2 ∨ y3 ∨ y4) ∧ (¬y3 ∨ ¬y4) ∧ (¬y3 ∨ y4) ∧ (y3 ∨ ¬y4)

I fixed variable ordering: y1, x1, x2, x3, x4, y2, y3, y4

I no pure literal propagation

I algorithm tries x1 7→ 1 for both branches y1 7→ 1 and y1 7→ 0

I repeats the same conflict on x variables in both of these
branches

I DPLL can repeat the same mistake over and over again

I SAT solver should learn from past mistakes



Deficiencies of DPLL

ψ = (x1∨x3∨x4)∧ (¬x1∨x2∨x3)∧ (¬x1∨¬x3)∧ (¬x2∨¬x4)∧ (x3∨x4)∧
(¬y1 ∨ y3 ∨ y4) ∧ (¬y2 ∨ y3 ∨ y4) ∧ (¬y3 ∨ ¬y4) ∧ (¬y3 ∨ y4) ∧ (y3 ∨ ¬y4)

I fixed variable ordering: y1, x1, x2, x3, x4, y2, y3, y4

I no pure literal propagation

I algorithm tries x1 7→ 1 for both branches y1 7→ 1 and y1 7→ 0

I repeats the same conflict on x variables in both of these
branches

I DPLL can repeat the same mistake over and over again

I SAT solver should learn from past mistakes



Deficiencies of DPLL

ψ = (x1∨x3∨x4)∧ (¬x1∨x2∨x3)∧ (¬x1∨¬x3)∧ (¬x2∨¬x4)∧ (x3∨x4)∧
(¬y1 ∨ y3 ∨ y4) ∧ (¬y2 ∨ y3 ∨ y4) ∧ (¬y3 ∨ ¬y4) ∧ (¬y3 ∨ y4) ∧ (y3 ∨ ¬y4)

I fixed variable ordering: y1, x1, x2, x3, x4, y2, y3, y4

I no pure literal propagation

I algorithm tries x1 7→ 1 for both branches y1 7→ 1 and y1 7→ 0

I repeats the same conflict on x variables in both of these
branches

I DPLL can repeat the same mistake over and over again

I SAT solver should learn from past mistakes



Deficiencies of DPLL

ψ = (x1∨x3∨x4)∧ (¬x1∨x2∨x3)∧ (¬x1∨¬x3)∧ (¬x2∨¬x4)∧ (x3∨x4)∧
(¬y1 ∨ y3 ∨ y4) ∧ (¬y2 ∨ y3 ∨ y4) ∧ (¬y3 ∨ ¬y4) ∧ (¬y3 ∨ y4) ∧ (y3 ∨ ¬y4)

I fixed variable ordering: y1, x1, x2, x3, x4, y2, y3, y4

I no pure literal propagation

I algorithm tries x1 7→ 1 for both branches y1 7→ 1 and y1 7→ 0

I repeats the same conflict on x variables in both of these
branches

I DPLL can repeat the same mistake over and over again

I SAT solver should learn from past mistakes



Deficiencies of DPLL

ψ = (x1∨x3∨x4)∧ (¬x1∨x2∨x3)∧ (¬x1∨¬x3)∧ (¬x2∨¬x4)∧ (x3∨x4)∧
(¬y1 ∨ y3 ∨ y4) ∧ (¬y2 ∨ y3 ∨ y4) ∧ (¬y3 ∨ ¬y4) ∧ (¬y3 ∨ y4) ∧ (y3 ∨ ¬y4)

I fixed variable ordering: y1, x1, x2, x3, x4, y2, y3, y4

I no pure literal propagation

I algorithm tries x1 7→ 1 for both branches y1 7→ 1 and y1 7→ 0

I repeats the same conflict on x variables in both of these
branches

I DPLL can repeat the same mistake over and over again

I SAT solver should learn from past mistakes



Implication graph

Definition (Implication graph)

Implication graph for α is an acyclic labeled directed graph
G = (V ∪ {K},E ) where:

I Vertices V correspond to variables.
I labeled by current assignment and decision level
I x@N (¬x@N): x is assigned True (False) at decision level N.

I Edges E represents reasons for assigning a value.
I (x , y) ∈ E , if ¬x ∈ Antecedent(y) with α(x) = 1 or

x ∈ Antecedent(y) with α(x) = 0
I (x , y) is labeled with Antecedent(y).

I Vertex K represents a conflict
I (x ,K ) ∈ E , if ¬x ∈ c with α(x) = 1 or x ∈ c with α(x) = 0

where c is a conflicting clause under α.
I (x ,K ) is labeled the corresponding conflict clause.

I Roots (no incoming edges) correspond to decisions, inner nodes (except
K) to unit propagation. If a there is a path from roots to K we call the
implication graph the conflict graph.



Implication graph

Definition (Implication graph)

Implication graph for α is an acyclic labeled directed graph
G = (V ∪ {K},E ) where:

I Vertices V correspond to variables.
I labeled by current assignment and decision level
I x@N (¬x@N): x is assigned True (False) at decision level N.

I Edges E represents reasons for assigning a value.
I (x , y) ∈ E , if ¬x ∈ Antecedent(y) with α(x) = 1 or

x ∈ Antecedent(y) with α(x) = 0
I (x , y) is labeled with Antecedent(y).

I Vertex K represents a conflict
I (x ,K ) ∈ E , if ¬x ∈ c with α(x) = 1 or x ∈ c with α(x) = 0

where c is a conflicting clause under α.
I (x ,K ) is labeled the corresponding conflict clause.

I Roots (no incoming edges) correspond to decisions, inner nodes (except
K) to unit propagation. If a there is a path from roots to K we call the
implication graph the conflict graph.



Example of implication graph

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨

¬x3) ∧ (¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨
¬x3) ∧ (¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3 ∨ x4)

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K



Example of implication graph

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨

¬x3) ∧ (¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨
¬x3) ∧ (¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3 ∨ x4)

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K



Example of implication graph

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨

¬x3) ∧ (¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨
¬x3) ∧ (¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3 ∨ x4)

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K



Example of implication graph

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨

¬x3) ∧ (¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨
¬x3) ∧ (¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3 ∨ x4)

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K



Example of implication graph

ϕ = (x1∨x3∨x4)∧(¬x1∨x2∨x3)∧(¬x1∨¬x3)∧(¬x2∨¬x4)∧(x3∨x4)

1. Decide α(x1) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x3)︸ ︷︷ ︸

unit clause

∧(¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)

2. Derive α(x3) = 0:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

unit clause

∧(¬x1 ∨

¬x3) ∧ (¬x2 ∨ ¬x4) ∧ (x3 ∨ x4)︸ ︷︷ ︸
unit clause

3. Derive α(x2) = 1, α(x4) = 1:
(x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨
¬x3) ∧ (¬x2 ∨ ¬x4)︸ ︷︷ ︸

conflict clause

∧(x3 ∨ x4)

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K



Conflict clauses as cuts in the implication graph

Definition (separating cut)

A separating cut in a conflict graph is a
minimal set of edges whose removal
breaks all paths from the root nodes to
the conflict node.

I Each cut splits the graph to reason
side and conflict side.

I The set of nodes on reason side
with an edge to conflict side
constitutes a sufficient condition
for the conflict.

I Its negation is a conflict clause.

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K



Conflict clauses as cuts in the implication graph

Definition (separating cut)

A separating cut in a conflict graph is a
minimal set of edges whose removal
breaks all paths from the root nodes to
the conflict node.

I Each cut splits the graph to reason
side and conflict side.

I The set of nodes on reason side
with an edge to conflict side
constitutes a sufficient condition
for the conflict.

I Its negation is a conflict clause.

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K



Clause learning

Observation
Every separating cut in conflict graph
determines a conflict clause c such that
ϕ→ c, where ϕ is the input formula.

I The conflict clause can be added
to the input formula without
effecting satisfiability.

I It prunes the search tree.
I This process is referred to as

learning.
I SAT solver is ”learning” from its

past mistakes.

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K

I First cut ⇒ conflict
clause ¬x1.

I Second cut⇒ conflict
clause ¬x2 ∨ x3.



Clause learning

Observation
Every separating cut in conflict graph
determines a conflict clause c such that
ϕ→ c, where ϕ is the input formula.

I The conflict clause can be added
to the input formula without
effecting satisfiability.

I It prunes the search tree.
I This process is referred to as

learning.
I SAT solver is ”learning” from its

past mistakes.

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K

I First cut ⇒ conflict
clause ¬x1.

I Second cut⇒ conflict
clause ¬x2 ∨ x3.



Clause learning

Observation
Every separating cut in conflict graph
determines a conflict clause c such that
ϕ→ c, where ϕ is the input formula.

I The conflict clause can be added
to the input formula without
effecting satisfiability.

I It prunes the search tree.
I This process is referred to as

learning.
I SAT solver is ”learning” from its

past mistakes.

¬x1 ∨ ¬x3

¬x1 ∨ x2 ∨ x3

x3 ∨ x4
¬x1 ∨ x2 ∨ x3

¬x2 ∨ ¬x4¬x2 ∨ ¬x4

x1@1

¬x3@1

x4@1x2@1

K

I First cut ⇒ conflict
clause ¬x1.

I Second cut⇒ conflict
clause ¬x2 ∨ x3.



Clause learning strategies

I Different cuts correspond to different conflict clause.

I Impossible to predict if a clause will be more useful than other.
I In general smaller clauses are more desirable.

I Less storage space
I Earlier unit propagation

I Any number of conflict clauses could be learnt.

I Many SAT solvers learn a single clause with a special property,
an asserting clause.



Asserting clause and UIP

Definition (asserting clause)

Asserting clause is a conflict clause that contains exactly one literal
from the current decision level.

Definition
(unique implication point) Unique implication point (UIP) is any
vertex other than K that is on all paths from the current decision
level vertex to K.

I UIP always exists (at least the decision vertex itself)

I there may be more UIPs

Definition (first UIP)

First UIP is the UIP that is closest to K



Clause learning and backtracking

I Find the conflict clause containing the negation of first UIP as
its single literal from current decision level.

I asserting

I Backtracking with asserting clause
I Backtrack to the second highest decision level from levels of

literals in the conflict clause.
I Equivalently (for asserting clause) to the highest decision level

of its literals, excluding the UIP.
I The newly learnt clause is unit at this decision level ⇒ Unit

propagation is immediately triggered.

I Notes:
I If a conflict clause contains only literals from decision level 0,

then the input formula is unsatisfiable.
I If a conflict clause contains a single literal, the backtrack level

is 0.



CDCL Algorithm

1: procedure CDCL(ϕ)
2: α← ∅
3: if BCP(ϕ, α) = NULL then return FALSE

4: while TRUE do
5: (x , v)← SELECT (ϕ, α)
6: if (x , v) = NULL then return TRUE

7: α← α ∪ {x ← v}
8: (result, α)← BCP(ϕ, α)
9: while not result do

10: (level , ϕ)← ANALYZE -CONFLICT (ϕ, α)
11: if level < 0 then return FALSE

12: BACKTRACK (ϕ, level)
13: (result, α)← BCP(ϕ, α)



CDCL Algorithm

I BCP. Performs unit propagation iteratively. Returns updated
assignment and conflict indicator.

I SELECT. Selects unassigned variable and its polarity. Returns
NULL if all variables are assigned.

I ANALYZE-CONFLICT. Determines backtrack level and
extends ϕ with learned clause(s).

I BACKTRACK. Backtracks to the given decision level. Erases
all assignments made after this level.



CDCL Algorithm
Notes

I Algorithm always terminates.
I Idea of a proof: The algorithm never enters the same decision

level with the same partial assignment twice.

I Learned clauses can be pruned.
I Too many learned clauses slow down the solver too much.
I Many of them are not used more than once.

I Implication graph can be represented implictly (decision trail
with decision levels and polarity for variables, map of literals
to antecedents).



CDCL Algorithm
Notes

I Algorithm always terminates.
I Idea of a proof: The algorithm never enters the same decision

level with the same partial assignment twice.

I Learned clauses can be pruned.
I Too many learned clauses slow down the solver too much.
I Many of them are not used more than once.

I Implication graph can be represented implictly (decision trail
with decision levels and polarity for variables, map of literals
to antecedents).



CDCL Algorithm
Notes

I Algorithm always terminates.
I Idea of a proof: The algorithm never enters the same decision

level with the same partial assignment twice.

I Learned clauses can be pruned.
I Too many learned clauses slow down the solver too much.
I Many of them are not used more than once.

I Implication graph can be represented implictly (decision trail
with decision levels and polarity for variables, map of literals
to antecedents).



Computing asserting clause

1: procedure ANALYZE-CONFLICT(ϕ, α)
2: if decision-level = 0 then return (−1, ϕ)

3: c ← unsatisfied clause w.r.t. α
4: while c is not asserting do
5: l ← most recently assigned literal in c
6: c ← RESOLVE (c ,Antecedent(l),Var(l))

7: ϕ← ϕ ∪ c
8: return (LEVEL(c), ϕ)

I RESOLVE (c1, c2, v) returns resolvent of c1 and c2 where x is
the resolution variable.

I LEVEL(c) returns the second highest decision level of literals
in c . (Returns 0 is c has only one literal.)



Computing asserting clause

1: procedure ANALYZE-CONFLICT(ϕ, α)
2: if decision-level = 0 then return (−1, ϕ)

3: c ← unsatisfied clause w.r.t. α
4: while c is not asserting do
5: l ← most recently assigned literal in c
6: c ← RESOLVE (c ,Antecedent(l),Var(l))

7: ϕ← ϕ ∪ c
8: return (LEVEL(c), ϕ)

I RESOLVE (c1, c2, v) returns resolvent of c1 and c2 where x is
the resolution variable.

I LEVEL(c) returns the second highest decision level of literals
in c . (Returns 0 is c has only one literal.)


	Motivation
	DPLL based solvers
	Algorithm DPLL
	Algorithm CDCL


