Decision Procedures and Verification

Martin Blicha

Charles University

26.3.2018



SATISFIABILITY MODULO
THEORIES (SMT)



SMT intro

» Decision problem for formulas in first-order logic with respect
to some background theory
» SAT: (aV b) A (—aV —b)
» SMT: (x >0)A(y >20)A(x+y <0)
» Today we consider only quantifier-free fragments of first-order
logic.

» We assume the formulas are quantifier-free and in NNF.



SMT - Logics

SMT-LIB logics

Image source: http://smtlib.cs.uiowa.edu/logics.shtml


http://smtlib.cs.uiowa.edu/logics.shtml

Decision procedure for conjunctive fragment

Conjunctive fragment

Conjunctive fragment of T consists of formulas that are
conjunctions of T-literals.

» Today we assume we have a decision procedure DP7 for a
conjunctive fragment of T.



Example: Decision procedure for the theory of equality

Definition

Equality graph for a formula ¢ from a conjunctive fragment of the
theory of equality is G(V/, E=, E) where nodes from V correspond
to variables and edges correspond to equality and inequality literals.

Decision procedure for the theory of equality

Formula ¢ is unsatisfiable if and only if there exists an inequality
edge (from E.) such that its vertices are connected by a sequence
of equality edges (from E-).



From conjunctive fragment to NNF formulas

Direct approach

Case splitting

Example
a=xVxa=x)A=xVxi=x)Ax1#ZxAx1#x3Ax1 %X
» Four cases
> Xl:X2/\X]_:X2/\X]_7éX2/\X17£X3/\X1#X4
> Xl:XQ/\X1=X4/\X175X2/\X175X3/\X1#X4
> X1 =x3AXI =X AXy E X0 AXL £ X3AXL FE Xy
> Xy =x3AXI =X AXL FE X AXL £ X3 A XL FE X

» all unsatisfiable — the formula is unsatisfiable

» Case splitting is inefficient
> In general number of cases exponential in the size of the
original formula
» Missed opportunities for learning



From conjunctive fragment to NNF formulas
SMT approach

> ldea: utilize the learning capabilities of SAT
» Combination of DP+ and a SAT solver
» SAT solver chooses literals to satisfy in order to satisfy the
Boolean structure of the formula
» DPt checks if the choice is T-satisfiable.
» Modular (and efficient) solution
» Avoids explicit case splitting



SMT framework

Basic notions

» Boolean encoder of an atom at is a unique Boolean variable
e(at).

» Propositional skeleton of a formula ¢ is denoted as e(y) and
is a result of replacing each literal with its Boolean encoder.

Example
e(p) =e(x=y)Ve(x=2z)forp:=(x=y)V(x=2z)



Integration of a SAT solver and DPy - intuitively (1)

Given a NNF formula p = (x =y)A((y =zAx # z) V (x = 2))
proceed as follows:

>

>

Compute the propositional skeleton e(¢p).
SAT solver will be iteratively queried for satisfiability of a
propositional formula B

» At the begining B := e(y)
Suppose SAT solver returns a satisfying assignment of B.

» a={e(x=y)— TRUE,e(y = z) — TRUE,e(x = z)

FALSE}

Decision procedure DPt is queried for satisfiability of a
conjunction of literals corresponding to the assignments of the
Boolean encoders.



Integration of a SAT solver and DPy - intuitively (2)

v

DP+ is queried for the satisfiability of the conjunction of
literals corresponding to the found assignment a.

v

Let Th(«) denote the set of literals corresponding to the
assignment «

» at € Th(a) if a(e(at)) = TRUE
» —at € Th(w) if a(e(at)) = FALSE

Let ﬁ(a) denote the conjunction of literals in Th(«)

Then DP7 is queried for the satisfiability of Th(c)
» In our case: ﬁ(a) =x=y)A(y=2)A-(x=2z2)

v

v



Integration of a SAT solver and DPt - intuitively (3)

» If DPt declares the query satisfiable, the original input
formula ¢ is satisfiable.

» If DPt declares the query unsatisfiable, then ﬂﬁ(a) is a
T-valid clause and can be added to B.
» Band BA ﬁﬁ(a) are equisatisfiable w.r.t. T.
> ﬂﬁ(a) blocks the current assignment « found by the SAT
solver (blocking clause, blocking lemma, T-lemma).
> ﬂﬂ(a) is added to B and the process starts again by querying
SAT solver.
» Continuing with our example:
» DPy declares that (x =y)A(y = z)A-(x =2z) is
unsatisfiable.
> A new clause is learned at the propositional level:

~Th(a) = ~(e(x = y)) V ~(e(y = 2)) V e(x = 2)
» SAT solver is now queried for B := B A = Th(«).



Integration of a SAT solver and DPt - intuitively (3)

» Finishing the example:
» SAT solver founds an assignment o = {e(x = y) —
TRUE,e(y = z) = TRUE, e(x = z) — TRUE}
» DPr checks that x =y Ay = z A x = z is indeed satisfiable.
» The result is that the original input formula ¢ is satisfiable.

o Th(a)
/\
SAT solver DPy




Integration of a SAT solver and DPt (1)

Input: Formula ¢
Output: SAT if ¢ is satisfiable, UNSAT if it is unsatisfiable

1. procedure LAZY-BASIC(p)

2 B+ e(y)

3 while TRUE do

4: (a, res) < SAT-sOLVER(B)

5: if res == UNSAT then return UNSAT
6: (t, res) <— DEDUCTION(Th(w))

7 if res == SAT then return SAT

8 B < B Ae(t)



Integration of a SAT solver and DPt (2)

v

Consider the following three requirements on DEDUCTION:
1. The formula t is T-valid.
2. The atoms in t are restricted to those appearing in .
3. The encoding of t contradicts «, i.e. e(t) is a blocking clause.

v

Requirement 1 guarantees soundness.

v

Requirements 2 and 3 guarantee termination.

v

The cooperation can be much more efficient if DPt is
integrated directly into the CDCL procedure of the SAT solver.



Lazy-CDCL

1: procedure LAazy-CDCL(yp)

2 ADDCLAUSES(cnf(e(y)))

3 while TRUE do

4 while BCP() == conflict do

5: backtrack-level <~ ANALYZE-CONFLICT()
6 if backtrack-level < 0 then return UNSAT
7 BACKTRACK(backtrack-level)

8 if DECIDE() == NULL then

9 //Full satisfying assignment « found

10: (t, res) + DEDUCTION(ﬁ(a))
11: if res == SAT then return SAT
12: ADDCLAUSES(e(t))



Improving Lazy-CDLC

» Sending partial assignment to DEDUCTION
» This has two advantages:
1. theory-level conflicts are detected earlier and stronger lemmas
are returned to the SAT solver,
2. theory can deduce a value for some literals = theory
propagation.
» Example: Suppose atoms x > 10 and x < 0 are present in ¢
» Assignment e(x > 10) — TRUE and e(x < 0) — TRUE
cannot be extended to a satisfying assignment.
» From e(x > 10) — TRUE, linear arithmetic can deduce that
x < 0 is FALSE, so the assignment can be extended by
e(x < 0) — FALSE.



Algorithm DPLL(T)

1: procedure DPLL(T)(y)

2 ADDCLAUSES(cnf(e(y)))
3 while TRUE do

4 repeat

5: while BCP() == conflict do
6 backtrack-level < ANALYZE-CONFLICT()
7 if backtrack-level < 0 then return UNSAT
8 BACKTRACK(backtrack-level)

9

: (t, res) < DEDUCTION(ﬁ(a))
10: ADDCLAUSES(e(t))
11 until t == TRUE
12 if « is a full assignment then return SAT

13: DECIDE()



Possible modifications

» Exhaustive theory propagation

» Propagate all literals implied by ﬁ(a) in T.

» Example: In equality logic, for each unassigned atom x; = x;
check if the current assignment forms a path in E_. If yes this
atom is implied. If current assignment forms a disequality
path, then negation is implied.

» In practice, usually too expensive and only simple, cheap
propagations are performed.

» Generating strong lemmas

» DEDUCTION returns a lemma to block current assignment «
(in case of conflict).

» Stronger lemma block more assignments.

» Identify those literals that are sufficient to prove the conflict
(unsatisfiable core).



Summary

» Decision procedure for quantifier-free theory can be obtained
from a combination of SAT solver and a decision procedure
for a conjunctive fragment of the theory.

» More effective if DPt+

> can generate strong explanations for conflict;
» can derive values of yet unassigned literals (theory

propagation);
» is incremental.



	Satisfiability Modulo Theories (SMT)

