
Decision Procedures and Verification

Martin Blicha

Charles University

26.3.2018



Satisfiability Modulo
Theories (SMT)



SMT intro

I Decision problem for formulas in first-order logic with respect
to some background theory

I SAT: (a ∨ b) ∧ (¬a ∨ ¬b)
I SMT: (x ≥ 0) ∧ (y ≥ 0) ∧ (x + y < 0)

I Today we consider only quantifier-free fragments of first-order
logic.

I We assume the formulas are quantifier-free and in NNF.



SMT - Logics

SMT-LIB logics

Image source: http://smtlib.cs.uiowa.edu/logics.shtml

http://smtlib.cs.uiowa.edu/logics.shtml


Decision procedure for conjunctive fragment

Conjunctive fragment

Conjunctive fragment of T consists of formulas that are
conjunctions of T -literals.

I Today we assume we have a decision procedure DPT for a
conjunctive fragment of T .



Example: Decision procedure for the theory of equality

Definition
Equality graph for a formula ϕ from a conjunctive fragment of the
theory of equality is G (V ,E=,E 6=) where nodes from V correspond
to variables and edges correspond to equality and inequality literals.

Decision procedure for the theory of equality

Formula ϕ is unsatisfiable if and only if there exists an inequality
edge (from E 6=) such that its vertices are connected by a sequence
of equality edges (from E=).



From conjunctive fragment to NNF formulas
Direct approach

Case splitting

Example

(x1 = x2 ∨ x1 = x3) ∧ (x1 = x2 ∨ x1 = x4) ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4

I Four cases
I x1 = x2 ∧ x1 = x2 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4
I x1 = x2 ∧ x1 = x4 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4
I x1 = x3 ∧ x1 = x2 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4
I x1 = x3 ∧ x1 = x4 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4

I all unsatisfiable → the formula is unsatisfiable

I Case splitting is inefficient
I In general number of cases exponential in the size of the

original formula
I Missed opportunities for learning



From conjunctive fragment to NNF formulas
SMT approach

I Idea: utilize the learning capabilities of SAT
I Combination of DPT and a SAT solver
I SAT solver chooses literals to satisfy in order to satisfy the

Boolean structure of the formula
I DPT checks if the choice is T-satisfiable.

I Modular (and efficient) solution
I Avoids explicit case splitting



SMT framework
Basic notions

I Boolean encoder of an atom at is a unique Boolean variable
e(at).

I Propositional skeleton of a formula ϕ is denoted as e(ϕ) and
is a result of replacing each literal with its Boolean encoder.

Example

e(ϕ) := e(x = y) ∨ e(x = z) for ϕ := (x = y) ∨ (x = z)



Integration of a SAT solver and DPT - intuitively (1)

Given a NNF formula ϕ = (x = y) ∧ ((y = z ∧ x 6= z) ∨ (x = z))
proceed as follows:

I Compute the propositional skeleton e(ϕ).
I SAT solver will be iteratively queried for satisfiability of a

propositional formula B
I At the begining B := e(ϕ)

I Suppose SAT solver returns a satisfying assignment of B.
I α = {e(x = y) 7→ TRUE , e(y = z) 7→ TRUE , e(x = z) 7→

FALSE}
I Decision procedure DPT is queried for satisfiability of a

conjunction of literals corresponding to the assignments of the
Boolean encoders.



Integration of a SAT solver and DPT - intuitively (2)

I DPT is queried for the satisfiability of the conjunction of
literals corresponding to the found assignment α.

I Let Th(α) denote the set of literals corresponding to the
assignment α

I at ∈ Th(α) if α(e(at)) = TRUE
I ¬at ∈ Th(α) if α(e(at)) = FALSE

I Let T̂h(α) denote the conjunction of literals in Th(α)

I Then DPT is queried for the satisfiability of T̂h(α)

I In our case: T̂h(α) = (x = y) ∧ (y = z) ∧ ¬(x = z)



Integration of a SAT solver and DPT - intuitively (3)

I If DPT declares the query satisfiable, the original input
formula ϕ is satisfiable.

I If DPT declares the query unsatisfiable, then ¬T̂h(α) is a
T -valid clause and can be added to B.

I B and B ∧ ¬T̂h(α) are equisatisfiable w.r.t. T .
I ¬T̂h(α) blocks the current assignment α found by the SAT

solver (blocking clause, blocking lemma, T -lemma).
I ¬T̂h(α) is added to B and the process starts again by querying

SAT solver.

I Continuing with our example:
I DPT declares that (x = y) ∧ (y = z) ∧ ¬(x = z) is

unsatisfiable.
I A new clause is learned at the propositional level:

¬T̂h(α) = ¬(e(x = y)) ∨ ¬(e(y = z)) ∨ e(x = z)
I SAT solver is now queried for B := B ∧ ¬T̂h(α).



Integration of a SAT solver and DPT - intuitively (3)

I Finishing the example:
I SAT solver founds an assignment α = {e(x = y) 7→

TRUE , e(y = z) 7→ TRUE , e(x = z) 7→ TRUE}
I DPT checks that x = y ∧ y = z ∧ x = z is indeed satisfiable.
I The result is that the original input formula ϕ is satisfiable.

DPTSAT solver

α T̂h(α)

te(t)



Integration of a SAT solver and DPT (1)

Input: Formula ϕ
Output: SAT if ϕ is satisfiable, UNSAT if it is unsatisfiable

1: procedure LAZY-BASIC(ϕ)
2: B← e(ϕ)
3: while TRUE do
4: (α, res)← SAT-solver(B)
5: if res == UNSAT then return UNSAT
6: (t, res)← Deduction(T̂h(α))
7: if res == SAT then return SAT
8: B← B ∧ e(t)



Integration of a SAT solver and DPT (2)

I Consider the following three requirements on Deduction:

1. The formula t is T -valid.
2. The atoms in t are restricted to those appearing in ϕ.
3. The encoding of t contradicts α, i.e. e(t) is a blocking clause.

I Requirement 1 guarantees soundness.

I Requirements 2 and 3 guarantee termination.

I The cooperation can be much more efficient if DPT is
integrated directly into the CDCL procedure of the SAT solver.



Lazy-CDCL

1: procedure Lazy-CDCL(ϕ)
2: AddClauses(cnf (e(ϕ)))
3: while TRUE do
4: while BCP() == conflict do
5: backtrack-level ← Analyze-Conflict()
6: if backtrack-level < 0 then return UNSAT

7: Backtrack(backtrack-level)

8: if Decide() == NULL then
9: //Full satisfying assignment α found

10: (t, res)← Deduction(T̂h(α))
11: if res == SAT then return SAT
12: AddClauses(e(t))



Improving Lazy-CDLC

I Sending partial assignment to Deduction
I This has two advantages:

1. theory-level conflicts are detected earlier and stronger lemmas
are returned to the SAT solver,

2. theory can deduce a value for some literals ⇒ theory
propagation.

I Example: Suppose atoms x ≥ 10 and x < 0 are present in ϕ
I Assignment e(x ≥ 10) 7→ TRUE and e(x < 0) 7→ TRUE

cannot be extended to a satisfying assignment.
I From e(x ≥ 10) 7→ TRUE , linear arithmetic can deduce that

x < 0 is FALSE, so the assignment can be extended by
e(x < 0) 7→ FALSE .



Algorithm DPLL(T )

1: procedure DPLL(T )(ϕ)
2: AddClauses(cnf (e(ϕ)))
3: while TRUE do
4: repeat
5: while BCP() == conflict do
6: backtrack-level ← Analyze-Conflict()
7: if backtrack-level < 0 then return UNSAT

8: Backtrack(backtrack-level)

9: (t, res)← Deduction(T̂h(α))
10: AddClauses(e(t))
11: until t == TRUE
12: if α is a full assignment then return SAT

13: Decide()



Possible modifications

I Exhaustive theory propagation
I Propagate all literals implied by T̂h(α) in T .
I Example: In equality logic, for each unassigned atom xi = xj

check if the current assignment forms a path in E=. If yes this
atom is implied. If current assignment forms a disequality
path, then negation is implied.

I In practice, usually too expensive and only simple, cheap
propagations are performed.

I Generating strong lemmas
I Deduction returns a lemma to block current assignment α

(in case of conflict).
I Stronger lemma block more assignments.
I Identify those literals that are sufficient to prove the conflict

(unsatisfiable core).



Summary

I Decision procedure for quantifier-free theory can be obtained
from a combination of SAT solver and a decision procedure
for a conjunctive fragment of the theory.

I More effective if DPT

I can generate strong explanations for conflict;
I can derive values of yet unassigned literals (theory

propagation);
I is incremental.


	Satisfiability Modulo Theories (SMT)

