## Decision Procedures and Verification

#### Martin Blicha

Charles University

26.3.2018

## Satisfiability Modulo Theories (SMT)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### SMT intro

- Decision problem for formulas in first-order logic with respect to some background *theory*
  - SAT:  $(a \lor b) \land (\neg a \lor \neg b)$
  - SMT:  $(x \ge 0) \land (y \ge 0) \land (x + y < 0)$
- Today we consider only quantifier-free fragments of first-order logic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ We assume the formulas are quantifier-free and in NNF.

## SMT - Logics



Decision procedure for conjunctive fragment

#### Conjunctive fragment

Conjunctive fragment of T consists of formulas that are conjunctions of T-literals.

► Today we assume we have a decision procedure *DP*<sub>T</sub> for a *conjunctive fragment* of *T*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: Decision procedure for the theory of equality

#### Definition

*Equality graph* for a formula  $\varphi$  from a conjunctive fragment of the theory of equality is  $G(V, E_{=}, E_{\neq})$  where nodes from V correspond to variables and edges correspond to equality and inequality literals.

#### Decision procedure for the theory of equality

Formula  $\varphi$  is unsatisfiable if and only if there exists an inequality edge (from  $E_{\neq}$ ) such that its vertices are connected by a sequence of equality edges (from  $E_{=}$ ).

# From conjunctive fragment to NNF formulas Direct approach

## Case splitting

#### Example

 $(x_1 = x_2 \lor x_1 = x_3) \land (x_1 = x_2 \lor x_1 = x_4) \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4$ 

- Four cases
  - $\begin{array}{l} \bullet \quad x_1 = x_2 \land x_1 = x_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \\ \bullet \quad x_1 = x_2 \land x_1 = x_4 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \\ \bullet \quad x_1 = x_3 \land x_1 = x_2 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \\ \bullet \quad x_1 = x_3 \land x_1 = x_4 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \end{array}$
- $\blacktriangleright$  all unsatisfiable  $\rightarrow$  the formula is unsatisfiable
- Case splitting is inefficient
  - In general number of cases exponential in the size of the original formula
  - Missed opportunities for learning

## From conjunctive fragment to NNF formulas SMT approach

- Idea: utilize the learning capabilities of SAT
  - Combination of  $DP_T$  and a SAT solver
  - SAT solver chooses literals to satisfy in order to satisfy the Boolean structure of the formula

- ► *DP*<sub>T</sub> checks if the choice is T-satisfiable.
- Modular (and efficient) solution
  - Avoids explicit case splitting

## SMT framework

Basic notions

- Boolean encoder of an atom at is a unique Boolean variable e(at).
- Propositional skeleton of a formula φ is denoted as e(φ) and is a result of replacing each literal with its Boolean encoder.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Example

$$e(\varphi) := e(x = y) \lor e(x = z)$$
 for  $\varphi := (x = y) \lor (x = z)$ 

Integration of a SAT solver and  $DP_T$  - intuitively (1)

Given a NNF formula  $\varphi = (x = y) \land ((y = z \land x \neq z) \lor (x = z))$  proceed as follows:

- Compute the propositional skeleton  $e(\varphi)$ .
- SAT solver will be iteratively queried for satisfiability of a propositional formula B
  - At the begining  $\mathbf{B} := e(\varphi)$
- Suppose SAT solver returns a satisfying assignment of **B**.
  - $\alpha = \{e(x = y) \mapsto TRUE, e(y = z) \mapsto TRUE, e(x = z) \mapsto FALSE\}$
- Decision procedure DP<sub>T</sub> is queried for satisfiability of a conjunction of literals corresponding to the assignments of the Boolean encoders.

Integration of a SAT solver and  $DP_T$  - intuitively (2)

- DP<sub>T</sub> is queried for the satisfiability of the conjunction of literals corresponding to the found assignment α.
- Let *Th*(α) denote the set of literals corresponding to the assignment α
  - $at \in Th(\alpha)$  if  $\alpha(e(at)) = TRUE$
  - $\neg at \in Th(\alpha)$  if  $\alpha(e(at)) = FALSE$
- Let  $\widehat{Th}(\alpha)$  denote the conjunction of literals in  $Th(\alpha)$
- Then  $DP_T$  is queried for the satisfiability of  $\widehat{Th}(\alpha)$ 
  - ▶ In our case:  $\widehat{Th}(\alpha) = (x = y) \land (y = z) \land \neg (x = z)$

Integration of a SAT solver and  $DP_T$  - intuitively (3)

- If DP<sub>T</sub> declares the query satisfiable, the original input formula φ is satisfiable.
- If  $DP_T$  declares the query unsatisfiable, then  $\neg \widehat{Th}(\alpha)$  is a *T*-valid clause and can be added to **B**.
  - ▶ **B** and **B**  $\land \neg \widehat{Th}(\alpha)$  are equisatisfiable w.r.t. *T*.
  - ¬*Th*(α) blocks the current assignment α found by the SAT solver (blocking clause, blocking lemma, *T*-lemma).
  - $\neg \widehat{Th}(\alpha)$  is added to **B** and the process starts again by querying SAT solver.

- Continuing with our example:
  - DP<sub>T</sub> declares that (x = y) ∧ (y = z) ∧ ¬(x = z) is unsatisfiable.
  - A new clause is learned at the propositional level:  $\neg \widehat{Th}(\alpha) = \neg (e(x = y)) \lor \neg (e(y = z)) \lor e(x = z)$

SAT solver is now queried for  $\mathbf{B} := \mathbf{B} \land \neg Th(\alpha)$ .

Integration of a SAT solver and  $DP_T$  - intuitively (3)

- Finishing the example:
  - ► SAT solver founds an assignment  $\alpha = \{e(x = y) \mapsto TRUE, e(y = z) \mapsto TRUE, e(x = z) \mapsto TRUE\}$
  - $DP_T$  checks that  $x = y \land y = z \land x = z$  is indeed satisfiable.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

• The result is that the original input formula  $\varphi$  is satisfiable.



Integration of a SAT solver and  $DP_T$  (1)

**Input:** Formula  $\varphi$ **Output:** SAT if  $\varphi$  is satisfiable, UNSAT if it is unsatisfiable 1: procedure LAZY-BASIC( $\varphi$ )  $\mathbf{B} \leftarrow e(\varphi)$ 2: while TRUE do 3.  $(\alpha, res) \leftarrow \text{SAT-SOLVER}(\mathbf{B})$ **4**· if res == UNSAT then return UNSAT 5:  $(t, res) \leftarrow \text{DEDUCTION}(\widehat{Th}(\alpha))$ 6: if res == SAT then return SAT 7:  $\mathbf{B} \leftarrow \mathbf{B} \wedge e(t)$ 8:

(日) (日) (日) (日) (日) (日) (日)

Integration of a SAT solver and  $DP_T$  (2)

► Consider the following three requirements on DEDUCTION:

- 1. The formula t is T-valid.
- 2. The atoms in t are restricted to those appearing in  $\varphi$ .
- 3. The encoding of t contradicts  $\alpha$ , i.e. e(t) is a blocking clause.
- Requirement 1 guarantees soundness.
- Requirements 2 and 3 guarantee termination.
- The cooperation can be much more efficient if DP<sub>T</sub> is integrated directly into the CDCL procedure of the SAT solver.

## Lazy-CDCL

| 1:  | procedure LAZY-CDCL( $\varphi$ )                                            |
|-----|-----------------------------------------------------------------------------|
| 2:  | $\operatorname{AddCLauses}(cnf(e(\varphi)))$                                |
| 3:  | while TRUE do                                                               |
| 4:  | <pre>while BCP() == conflict do</pre>                                       |
| 5:  | $backtrack-level \leftarrow Analyze-Conflict()$                             |
| 6:  | <b>if</b> <i>backtrack-level</i> < 0 <b>then return</b> <i>UNSAT</i>        |
| 7:  | BACKTRACK( <i>backtrack-level</i> )                                         |
| 8:  | if $DECIDE() == NULL$ then                                                  |
| 9:  | //Full satisfying assignment $lpha$ found                                   |
| 10: | $(t, \mathit{res}) \leftarrow 	ext{Deduction}(\widehat{\mathit{Th}}(lpha))$ |
| 11: | if $res == SAT$ then return $SAT$                                           |
| 12: | ADDCLAUSES(e(t))                                                            |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Improving Lazy-CDLC

Sending partial assignment to DEDUCTION

- This has two advantages:
  - 1. theory-level conflicts are detected earlier and stronger lemmas are returned to the SAT solver,
  - 2. theory can deduce a value for some literals ⇒ *theory propagation*.

• Example: Suppose atoms  $x \ge 10$  and x < 0 are present in  $\varphi$ 

- Assignment e(x ≥ 10) → TRUE and e(x < 0) → TRUE cannot be extended to a satisfying assignment.</p>
- From  $e(x \ge 10) \mapsto TRUE$ , linear arithmetic can deduce that x < 0 is FALSE, so the assignment can be extended by  $e(x < 0) \mapsto FALSE$ .

## Algorithm DPLL(T)

| 1:  | procedure $DPLL(T)(\varphi)$                                         |
|-----|----------------------------------------------------------------------|
| 2:  | ADDCLAUSES( $cnf(e(\varphi))$ )                                      |
| 3:  | while TRUE do                                                        |
| 4:  | repeat                                                               |
| 5:  | while BCP() == conflict do                                           |
| 6:  | $backtrack$ -level $\leftarrow$ ANALYZE-CONFLICT()                   |
| 7:  | <b>if</b> <i>backtrack-level</i> < 0 <b>then return</b> <i>UNSAT</i> |
| 8:  | BACKTRACK( <i>backtrack-level</i> )                                  |
| 9:  | $(t, res) \leftarrow \text{Deduction}(\widehat{Th}(\alpha))$         |
| 10: | ADDCLAUSES(e(t))                                                     |
| 11: | until $t == TRUE$                                                    |
| 12: | if $lpha$ is a full assignment then return SAT                       |
| 13: | Decide()                                                             |

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

### Possible modifications

- Exhaustive theory propagation
  - Propagate all literals implied by  $\widehat{Th}(\alpha)$  in T.
  - Example: In equality logic, for each unassigned atom x<sub>i</sub> = x<sub>j</sub> check if the current assignment forms a path in E<sub>=</sub>. If yes this atom is implied. If current assignment forms a disequality path, then negation is implied.
  - In practice, usually too expensive and only simple, cheap propagations are performed.
- Generating strong lemmas
  - DEDUCTION returns a lemma to block current assignment α (in case of conflict).
  - Stronger lemma block more assignments.
  - Identify those literals that are sufficient to prove the conflict (*unsatisfiable core*).

## Summary

 Decision procedure for quantifier-free theory can be obtained from a combination of SAT solver and a decision procedure for a conjunctive fragment of the theory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- More effective if DP<sub>T</sub>
  - can generate strong explanations for conflict;
  - can derive values of yet unassigned literals (theory propagation);
  - is incremental.