
Decision Procedures and Verification

Martin Blicha

Charles University

16.4.2018

Theory of Linear
Arithmetic

Theory of linear arithmetic

I quantifier-free conjunctive fragment

Definition
A quantifier-free formula in the language of the theory of linear
arithmetic is defined by the following grammar:

fla : fla ∧ fla | atom

atom : sum op sum

op : = | ≤ | <
sum : term | sum + term

term : identifier | constant | constant identifier

where identifiers are variables defined over single ininite domain.

Domains

I Reals (LRA)

I Integers (LIA)

I x > 0 ∧ x < 1
I Satisfiable in LRA, unsatisfiable in LIA

I Deciding satisfiability of conjunction of linear constraints
over reals is polynomial, while it is NP-complete over
integers.

Algorithms for solving linear constraints

I General Simplex (R)

I Fourier-Motzkin variable elimination (R)

I Branch-and-bound (I)

I Omega test (I)

Simplex algorithm

I Proposed by Dantzig in 1947.
I Optimizes an objective function given a set of linear

constraints.
I linear program (LP)

I Worst-case exponential, but efficient in practice.
I Polynomial algorithms exist, e.g. ellipsoid method.

I Traverses vertices of a convex polytope defined by the
constraints.

General simplex

I Input are constraints of the following form:
I Equalities a1x1 + · · ·+ anxn = 0
I Lower and upper bounds on the variables li ≤ xi ≤ ui , where li

and ui are constants.
I Bounds are optional

I This form is called general form
I Transformation of any linear constraint L ./ R (with
./∈ {=,≤,≥}) to general form:

I Move every term with variable from R to L to obtain L′ ./ b
where b is a constant.

I Introduce new variable si . Add constraints L′ − si = 0 and
si ./ b

I Replace equalities with two inequalities (both ≤ and ≥)

I Original and transformed problem are equisatisfiable

I New variables are called additional or slack variables, the
variables in the original constrains are referred to as problem
variables.

General simplex - problem representation

I With n problem and m additional variables, the problem is
represented as m × (n + m)-matrix A, together with bounds
on the variables.

I The decision problem can be written as Av = 0 and∧
i li ≤ si ≤ ui , with v a vector of problem and additional

variables.
I The submatrix corresponding to columns of additional

variables is a diagonal matrix with −1 on the diagonal.
I There is always such submatrix during the run of the algorithm.

I Variables of the columns of this diagonal matrix are basic
(also dependent) variables. The others are nonbasic variables.

I Tableau is a representation of A as m × n matrix (A without
the diagonal submatrix) with rows labeled by basic variables
and columns labeled by nonbasic variables.

General simplex - the algorithm (1)

I Data structures:
I Set of basic variables - B
I Set of nonbasic variables - N
I Tableau
I Assignment α : B ∪N → Q

I Initially: Additional variables are basic, program variables are
nonbasic, assignment assigns 0 to all variables.

I Algorithm maintains two invariants:

1. Aα(v) = 0 (v is the vector of all variables)
2. The values of the nonbasic variables are within their bounds:
∀vj ∈ N .lj ≤ α(vj) ≤ uj .

General simplex - the algorithm (2)

Algorithm General-Simplex

1. Transform input to general form Av = 0 and
∧

i li ≤ si ≤ ui .

2. Initialize the data structures.

3. Determine a fixed order on the variables.

4. If no basic variable violates its bounds, return SAT. Otherwise
take the first basic variable vi violating its bounds.

5. Find the first suitable nonbasic variable vj for pivoting with vi .
If there is no such variable, return UNSAT.

6. Update α so that vi satisfies its bounds. Perform the pivot
operation on vi and vj .

7. Go to step 4.

General simplex - pivoting

I Pivot operation (or pivoting) = update of the tableau
corresponding to swapping one basic and one nonbasic
variable.

I Given a basic variable vi and nonbasic variable vj , the
coefficient aij is the pivot element. The column of xj is the
pivot column, the row of xi is the pivot row.

I Steps:

1. Solve row i for xj
2. For all rows l 6= i , eliminate xj by using the equality for xj

obtained from row i .

I Fixed ordering of variables ensures that no set of basic
variables is ever repeated and hence guarantees termination.

I Bland’s rule

General simplex - final notes

I Strict inequalities:
I Set of constraints containing strict inequalities
{s1 > 0, . . . sn > 0 is satisfiable iff there exists a rational
number δ > 0 such that the same set of constraints with
replaced inequalities s1 ≥ δ, . . . sn ≥ δ is satisfiable.

I DPLL(T) setting:
I Addition of a constraint:

1. If it is a bound on nonbasic variable, update α to restore the
second invariant.

2. Run General-Simplex from step 4.

I Removal of a constraint: Disable a bound on the
corresponding variable.

I For backtracking, only α needs to be updated, the tableau
need not change.

Branch and bound method (1)

I Developed for solving integer linear programs as optimization
problems.

I Here modified version for deciding feasibility.

I Idea:
I Solve relaxed problem
I If satisfiable but satisfying assignment is not integral, add

constraints forbidding this non-integer assignment but
preserving all potential integral ones.

Relaxed problem

Given an integer linear system S , its relaxation is S without the
integrality requirement (i.e., the variables are not required to be
integer).

I If relaxed problem is unsatisfiable, so is the original problem.

Branch and Bound method (2)
I Assume the existence of a procedure LPfeasible which receives

an linear system and returns satisfying assignment or UNSAT
of no satisfying assignment exists.

I Easy modification of General-Simplex

1: procedure Search-integral-solution(S)
2: res = LPfeasible(relaxed(S)))
3: if res == UNSAT then return
4: if res is integral then exit(SAT)

5: Select a variable v with a nonintegral value r
6: Search-integral-solution(S ∪ (v ≤ brc))
7: Search-integral-solution(S ∪ (v ≥ dre))
8: . No integer solution in this branch

9: procedure Feasibility-Branch-and-Bound(S)
10: Search-integral-solution(S)
11: return(UNSAT)

Completeness of Branch and Bound

I As presented, Feasibility-Branch-and-Bound is not
complete.

I 1 ≤ 3x − 3y ≤ 2 has no integer solution but unbounded real
solutions.

I Completeness can be achieved using the small-model property.

I A bound on each variable can be computed such that if a
solution exists, there also exists one within these bounds.

I If added explicitly as constraints, it makes Branch and Bound
complete.

Cutting-planes

I Cutting-planes are constraints that are added to a system
that remove only noninteger solutions.

I They improve the tightness of the relaxation, hence can
make branch-and-bound faster

I ⇒ branch-and-cut

I Gomory cuts
I Can be generated from assignment returned by

general Simplex method and current state of the
tableau.

Fourier-Motzkin Variable Elimination (1)

I Decides satisfiability of a conjunction of linear constraints.

I In practice not as efficient as Simplex method.
I But competitive on small formulas.

I Used for eliminating existential quantifiers from quantified
formulas of linear arithmetic.

I Eliminates variables from the system one by one while
preserving satisfiability.

Fourier-Motzkin Variable Elimination (2)

1. Eliminate all equalities from the system
I Express one variable as a linear combination of others and

substitute in all other constraints.

2. Repeatedly choose variable and remove it from the system by
projecting its constraints onto the rest of the system.

3. Deciding satisfiability of a system with single variable is trivial.

Projection of a variable (1)

I Assumptions:
I xn is picked to be eliminated next
I All constraints have the following form (with i ranging over

constraints):
n∑

j=1

ai,jxj ≤ bi

I Gather all constraints containing xn with non-zero coefficient
and use them to derive bounds on xn.

I β = bi
ai,n
−

n−1∑
j=1

ai,j
ai,n

xj

I If ai,n > 0⇒ upper bound, if ai,n < 0⇒ lower bound.

I If xn is not bounded both ways, i.e. it has only lower bounds
or only upper bounds, the variable is unbounded.

I Unbounded variable can be removed from the system together
with all constraints where it occurs.

Projection of a variable (2)

I If a variable has both kind of bounds it is bounded.

I Enumerate pairs of lower and upper bounds derived in the
previous step.

I For each pair of bounds βl ≤ xn ≤ βu the following constraint
is added:

βl ≤ βu
I This may simplify to constraint 0 ≤ b where b is a negative

constant, which means the problem is unsatisfiable.

I Otherwise the constraints containing xn are removed and next
variable to eliminate is picked.

Fourier-Motzkin Variable Elimination - final notes

I The algorithm can be naturally extended to
handle strict inequalities.

I If either lower or upper bound is strict, so is the
resulting constraint.

I Complexity:
I Increase in number of constraints in one step in worst

case is from m to m2

4

I Overall increase in worst case is from m to m2n

4n
.

Preprocessing

I Techniques to modify the input system of constraints
independent of the decision procedure used.

1. Constraints of form
n∑

j=0
ajxj ≤ b are redundant if

∑
j |aj>0

ajuj +
∑
j |aj<0

aj lj ≤ b

2. Bounds on individual variables can be derived (and possibly
tighten). If a0 > 0 then

x0 ≤ (b −
∑

j |aj>0,j>0

aj lj −
∑
j |aj<0

ajuj)/a0

and if a0 < 0 then

x0 ≥ (b −
∑
j |aj>0

aj lj −
∑

j |aj<0,j>0

ajuj)/a0

Preprocessing for integers

1. Multiply all constraints to make all constants and coefficients
integral.

2. Weak inequalities can be used instead of strong ones.

n∑
i=1

aixi < b ⇒
n∑

i=1

aixi ≤ b − 1

	Theory of Linear Arithmetic

