Decision Procedures and Verification

Martin Blicha

Charles University
23.4.2018

Theory of bit vector ARITHMETICS

Bit vector arithmetics

Definition

A quantifier-free formula in the language of the theory of bit vector arithmetic is defined by the following grammar:

$$
\begin{aligned}
& \text { fla }: \text { fla } \wedge \text { fla } \mid \neg \text { fla } \mid \text { atom } \\
& \text { atom }: \text { term rel term } \mid \text { Boolean - Identifier } \mid \text { term [constant] } \\
& \text { rel }:=\mid< \\
& \text { sum }: \text { term } \mid \text { sum }+ \text { term } \\
& \text { term }: \text { term op term } \mid \text { identifier } \mid \sim \text { term } \mid \text { constant } \mid \\
& \quad \text { atom?term : term } \mid \text { term[constant }: \text { constant }] \mid \text { ext(term) } \\
& \text { op }:+|-|\cdot| /|\ll| \gg| \&| ||\oplus| \circ
\end{aligned}
$$

Motivation (1)

- Consider a bit vector arithmetic formula φ :

$$
(x-y>0) \Leftrightarrow(x>y)
$$

- Valid over integers
- Not valid in structure with bit-vectors of fixed length

$$
\begin{array}{r}
11001000=200 \\
+01100100=100 \\
=\overline{00101100}=44
\end{array}
$$

- The meaning of arithmetic operations is defined by means of modular arithmetic.

Motivation (2)

- Efficient programming on bit-level
- Encoding literals in SAT solver

```
unsigned variable_index
    (int lit){
    if(lit<0)
    return -lit;
    return lit;
}
```

unsigned variable_index
(unsigned lit)\{
return lit >> 1;
\}
bool sign(unsigned lit)
return lit \& 1;
\}

Notation

- Church's λ-notation will be used to define bit-vectors
- λ-expression for a bit vector of length I :
- $\lambda i \in\{0,1, \ldots, I-1\} . f(i)$, where $f(i)$ is an expression determining the value of the i-th bit
- Examples:
- $\lambda i \in\{0,1, \ldots, I-1\} .0$ is a bit vector of length / consisting of all 0
- $\lambda i \in\{0,1, \ldots, 7\} \cdot\left\{\begin{array}{l}0 \text { if } I \text { is even } \\ 1 \text { otherwise }\end{array}\right.$ is a bit vector 10101010
- $\lambda i \in\{0,1, \ldots, I-1\} . \neg b_{i}$ is a bit vector of length / corresponding to bit-wise negation of a bit vector b

Semantics of operators (1)

Definition

Bit vector b of length I is an assignment $b:\{0,1, \ldots, I-1\} \rightarrow\{0,1\}$. The i-th bit of bit vector b is denoted as b_{i}. The set of all the bit vectors of length $/$ is denoted as bvec. .

- The length of the bit-vectors has impact on the satisfiability of a formulas.
- Signed and unsigned bit vectors are distinguished.
- semantics of arithmetic operations reflects the sign
- The type of an expression is a pair:
- the width in bits
- whether is it signed or unsigned

Semantics of operators (2)

- Bit-wise negation \sim :
- $\sim_{[/]}:$bvec $_{l} \rightarrow$ bvec $_{l}$, where $\sim_{[/]} b=\lambda i . \neg b_{i}$
- Bit-wise and \&:
$-\&_{[l]}:$ bvec $_{I} \times$ bvec $_{l} \rightarrow$ bvec $_{l}$, where $a \&_{[/]} b=\lambda i . a_{i} \wedge b_{i}$
- Bit-wise or \mid :
$-\left.\right|_{[/]}:$bvec $_{I} \times$ bvec $_{l} \rightarrow$ bvec $_{1}$, where $\left.a\right|_{[/]} b=\lambda i . a_{i} \vee b_{i}$
- Bit-wise xor \oplus :
- $\oplus_{[l]}:$ bvec $_{l} \times$ bvec $_{l} \rightarrow$ bvec $_{l}$, where $a \oplus_{[l]} b=\lambda i . a_{i} \oplus b_{i}$
- Concatenation of bit-vectors 0 :
${ }^{-} o_{[I+k]}:$ bvec $_{I} \times$ bvec $_{k} \rightarrow$ bvec $_{I+k}$, where

$$
a \circ_{[I+k]} b=\lambda i .\left\{\begin{array}{l}
a_{i}: i<1 \\
b_{i-1}: \text { otherwise }
\end{array}\right.
$$

Semantics of operators (3)

- Encoding of natural numbers (unsigned):

Definition (binary encoding)

Let x be a natural number and $b \in b v e c_{l}$ a bit vector. We say that b is a binary encoding of x if and only if: $x=\langle b\rangle U$, where $<>_{U}:$ bvec $_{I} \rightarrow\left\{0,1, \ldots, 2^{\prime}-1\right\}$ and $\left\langle b>_{U}=\sum_{i=0}^{I-1} b_{i} 2^{i}\right.$. Bit b_{0} is the lowest bit, bit b_{l-1} is the highest bit.

- Encoding of natural integers (signed):

Definition (two's complement)

Let x be an integer and $b \in$ bvec, a bit vector. $x=\langle b\rangle_{s}$, where $<>_{s}:$ bvec $_{l} \rightarrow\left\{-2^{I-1}, \ldots, 2^{I-1}-1\right\}$ and
$_{s}=-2^{I-1} b_{l-1}+\sum_{i=0}^{I-2} b_{i} 2^{i}$. Bit $b_{l}-1$ is called the sign bit of b.

Semantics of operators (4)

- addition and subtraction
- $a_{[l]}+u b_{[1]}=c_{[]]} \Leftrightarrow\langle a\rangle u+\langle b\rangle u=\langle c\rangle u \bmod 2^{\prime}$
- $a_{[I]}-u b_{[I]}=c_{[I]} \Leftrightarrow\langle a\rangle_{u}-\langle b\rangle_{u}=\langle c\rangle_{u} \bmod 2^{\prime}$
- $a_{[]}+s b_{[]]}=c_{[]]} \Leftrightarrow\langle a\rangle_{s}+\langle b\rangle_{s}=\langle c\rangle_{s} \bmod 2^{\prime}$
- $a_{[]]}-s b_{[1]}=c_{[1]} \Leftrightarrow\langle a\rangle_{s}-\langle b\rangle_{s}=\langle c\rangle_{s} \bmod 2^{\prime}$
- operations can be defined over mixed types
- $a_{[I]} u+u b_{[l] S}=c_{[I]} \Leftrightarrow\langle a\rangle u+\langle b\rangle_{S}=\langle c\rangle u \bmod 2^{\prime}$
- unary minus
- $-a_{l}=b_{l} \Leftrightarrow-\langle a\rangle_{s}=\left\langle b>_{s} \bmod 2^{\prime}\right.$

Semantics of operators (5)

- multiplication and division
- $a_{[I]} *_{U} b_{[I]}=c_{[I]} \Leftrightarrow\langle a\rangle_{U} *\langle b\rangle_{U}=\langle c\rangle_{U} \bmod 2^{\prime}$
- $a_{[I]} / u b_{[l]}=c_{[1]} \Leftrightarrow\langle a\rangle_{u} /\langle b\rangle_{u}=\langle c\rangle u \bmod 2^{\prime}$
- $a_{[l]} * s b_{[l]}=c_{[l]} \Leftrightarrow\langle a\rangle_{s} *\langle b\rangle_{s}=\langle c\rangle_{s} \bmod 2^{\prime}$
- $a_{[I]} / s b_{[1]}=c_{[I]} \Leftrightarrow\langle a\rangle s /\langle b\rangle_{s}=\langle c\rangle_{s} \bmod 2^{\prime}$
- relation operators
- $a_{[I]}<b_{[I]} \Leftrightarrow<a>_{U} \ll b>u$
- $a_{[/] S}<b_{[/] S} \Leftrightarrow<a>_{S} \ll b>_{S}$
- $a_{[I]}<b_{[I] S} \Leftrightarrow<a>u \ll b>s$
- $a_{[I] S}<b_{[I]} \Leftrightarrow<a>_{S} \ll b>_{U}$

Semantics of operators (6)

- extension of a bit vector ext
- bit vector of length l is extended to length m for $l \leq m$:
- zero extension: ext ${ }_{[m]} U\left(a_{[l]}\right)=b_{[m]} U \Leftrightarrow<a>_{U}=\left\langle b>_{U}\right.$
- sign extension: ext ${ }_{[m] S}\left(a_{[1]}\right)=b_{[m] S} \Leftrightarrow<a>_{s}=_{s}$
- shifting of a bit vector
- left shift - zero bits are filled from rigth
- $a_{[l]} \ll b_{u}=\lambda i .\left\{\begin{array}{l}a_{i-} \text { if } i \gequ \\ 0: \text { otherwise }\end{array}\right.$
- right shift - distinguished operations for signed and unsigned case:
- $a_{[I]} \gg b_{U}=\lambda i .\left\{\begin{array}{l}a_{i+\langle b\rangle} \text { if } i<1-\left\langle b>_{U}\right. \\ 0 \text { : otherwise }\end{array}\right.$
- $a_{[I] S} \gg b_{U}=\lambda i .\left\{\begin{array}{l}a_{i+} \text { if } i<l-U \\ a_{I-1}: \text { otherwise }\end{array}\right.$

Bit-vector flattening

- For a given bit-vector formula φ and equisatisfiable propositional ψ is constructed.

	cedure BV-Flattening(φ)
2 :	$\mathcal{B} \leftarrow e(\varphi)$
3:	for each $t_{[/]} \in T(\varphi)$ do
4:	for $i \in 0,1, \ldots, I-1$ do
5:	set $e(t)_{i}$ to a new Boolean variable
6:	for each $a \in A t(\varphi)$ do
7:	$\mathcal{B} \leftarrow \mathcal{B} \wedge \operatorname{BV}$-Constraint (e, a)
8:	for each $t_{[/]} \in T(\varphi)$ do
9:	$\mathcal{B} \leftarrow \mathcal{B} \wedge \operatorname{BV}$-Constraint (e, t)

- e is a propositional encoder, $\operatorname{At}(\varphi)$ and $T(\varphi)$ a set of atoms and terms of φ, respectively.

Bit vector constraints (1)

- If t is a bit vector or a is a propositional variable, no constraint is needed.
- BV-Constraint (e, t) and BV-Constraint (e, a) return True.
- If t is a vector constant $C_{[l]}$ then
- BV-Constraint (e, t) returns $\bigwedge_{i=0}^{I-1}\left(C_{i} \Leftrightarrow e(t)_{i}\right)$
- If t contains bit-wise operator then
- if $t=\sim_{[/]}$a BV-Constraint (e, t) returns $\bigwedge_{i=0}^{I-1}\left(\neg a_{i} \Leftrightarrow e(t)_{i}\right)$
- if $t=a \&_{[1]} b \operatorname{BV}-\operatorname{Constraint}(e, t)$ returns $\bigwedge_{\substack{i=0 \\ I-1}}^{l-1}\left(a_{i} \wedge b_{i} \Leftrightarrow e(t)_{i}\right)$
- if $t=\left.a\right|_{[l]} b \operatorname{BV}-\operatorname{Constraint}(e, t)$ returns $\bigwedge_{i=0}^{1}\left(a_{i} \vee b_{i} \Leftrightarrow e(t)_{i}\right)$
- if $t=a \oplus_{[l]} b \operatorname{BV}-\operatorname{ConstrainT}(e, t)$ returns $\bigwedge_{i=0}\left(a_{i} \oplus b_{i} \Leftrightarrow e(t)_{i}\right)$
- if $t=a_{[l]}{ }_{[I+k]} b_{[k]} \operatorname{BV}-C o n s t r a i n t(e, t)$ returns

$$
\bigwedge_{i=0}^{I+k-1}\left\{\begin{array}{l}
\left(a_{i} \Leftrightarrow e(t)_{i}\right): \text { if } i<1 \\
\left(b_{i} \Leftrightarrow e(t)_{i}\right): \text { otherwise }
\end{array}\right.
$$

Bit vector constraints (2)

- Constraints for arithmetic operations are based on implementations of these operations in logic circuits
- Various implementations
- Simplest usually burden the SAT solver the least
- A full adder is defined using the two functions carry and sum. Both of these functions take three input bits a, b, and cin as arguments. The function carry calculates the carry-out bit of the adder, and the function sum calculates the sum bit:
- carry $(a, b, c i n)=(a \wedge b) \vee((a \oplus b) \wedge c i n)$
- $\operatorname{sum}(a, b, c i n)=(a \oplus b) \oplus \operatorname{cin}$
- Carry bits $c_{0}, c_{1}, \ldots, c_{l}$ for l-bit vectors x and y with cin the input carry bits are defined as
- $c_{i}=\left\{\begin{array}{l}\operatorname{cin} \text { if } i=0 \\ \operatorname{carry}\left(x_{i-1}, y_{i-1}, c_{i-1}\right) \text { otherwise }\end{array}\right.$

Bit vector constraints (3)

- l-bit adder: A funtion add that assigns two l-bit bit vectors x and y and input carry bit cin an l-bit bit vector r corresponding to their sum and a carry-out bit cout is called l-bit added. The function add is defined as follows:
- $\operatorname{add}(x, y$, cin $)=(r$, cout $)$
- $r_{i}=\operatorname{sum}\left(x_{i}, y_{i}, c_{i}\right)$ for $i=0, \ldots, I-1$
- cout $=c_{l}$, where c_{i} for $i=0, \ldots, l$ are carry bits
- Constraint $t=a+_{[/]} b$ can be encoded by l-bit adder where the input carry bit is 0 :
- BV-Constraint (e, t) returns $\bigwedge_{i=0}^{I-1}\left(\operatorname{add}(a, b, 0) \cdot r_{i} \Leftrightarrow e(t)_{i}\right)$.
- Because $\langle a\rangle_{U}+\langle b\rangle_{U}=\left\langle e(t)>_{U} \bmod 2^{\prime}\right.$ iff

$$
\bigwedge_{i=0}^{1-1}\left(\operatorname{add}(a, b, 0) \cdot r_{i} \Leftrightarrow e(t)_{i}\right)
$$

- Constraint $t=a-_{[/]} b$ can be encoded in a similar way:
- BV-Constraint (e, t) returns $\bigwedge_{i=0}^{l-1}\left(\operatorname{add}(a, \sim b, 1) \cdot r_{i} \Leftrightarrow e(t)_{i}\right)$
- Uses the fact that $<(\sim b+1)>_{s}=-_{s} \bmod 2^{\prime}$.

Bit vector constraints (4)

- Relation operator constraints
- For $a t=_{\text {def }}\left(a=_{[1]} b\right)$ BV-Constraint $(e, a t)$ returns

$$
\left(\bigwedge_{i=0}^{I-1}\left(a_{i}=b_{i}\right)\right) \Leftrightarrow e(a t)
$$

- $a<b$ is transformed to $a-b<0$ and adder is built for the subtraction. The result depends on the encoding.
- Signed case: BV-Constraint(e, at) returns \neg add ($a, \sim b, 1$).cout
- Unsigned case: BV-Constraint($e, a t$) returns $a_{l-1} \Leftrightarrow b_{l-1} \oplus \operatorname{add}(a, b, 1)$.cout
- Bit-vector shifting constraints
- Assumptions: Shifted vector has / bits where / is a power of 2, size of the shift uses $n=\log _{2} /$ bits.
- Barrel shifter is used.
- Operates in n phases.
- Stage s can shift the operand by 2^{s} bits or leave it unaltered.

Bit vector constraints (5)

- Barrel shifter constraints
- For $t=a_{[l]} \ll b_{[n]}$ a function Ish for $s \in\{-1,0, \ldots, n-1\}$ is defined as follows:
- $\operatorname{lsh}(a, b,-1)=a$
- $\operatorname{Ish}(a, b, s)=\lambda i \in\{0, \ldots, I-1\} .\left\{\begin{array}{l}(\operatorname{Ish}(a, b, s-1))_{i-2^{s}} \text { if } i \geq 2^{s} \wedge b_{s} \\ (\operatorname{Ish}(a, b, s-1))_{i} \text { if } \neg b_{s} \\ 0 \text { otherwise }\end{array}\right.$
- BV-Constraint (e, t) returns $\bigwedge_{i=0}^{1}\left(\left(I s h(a, b, n)_{i} \Leftrightarrow e(t)_{i}\right)\right.$.
- Multiplication constraints
- For $t=a * b$ addition and shifts will be used, a function mul for $s \in\{-1,0, \ldots, I-1\}$ is defined as follows:
- mul $(a, b,-1)=0$
- mul $(a, b, s)=\operatorname{mul}(a, b, s-1)+\left(b_{s} ?(a \ll s): 0\right)$
- BV-Constraint (e, t) returns $\bigwedge_{i=0}^{l-1}\left(\left(m u l(a, b, l)_{i} \Leftrightarrow e(t)_{i}\right)\right.$.

Bit vector constraints (6)

- Division constraints
- For $t=a /[U] b$ following constraints will be used:
- $b \neq 0 \Rightarrow e(t) \cdot b+r=a$
- $b \neq 0 \Rightarrow r<b$
- Both constraints are returned by BV-Constraint (e, t) and r is a new bit vector the same width as b representing the remainder
- Signed division and modulo operations are handled similarly.
- Conditional expression
- Let $t=a t ? t_{1}: t_{2}$ be a conditional expression where at is an atom and t_{1}, t_{2} are terms.
- BV-Constraint (e, t) returns

$$
\left(a t \Rightarrow \bigwedge_{i=0}^{I-1}\left(e(t)_{i} \Leftrightarrow e\left(t_{1}\right)_{i}\right)\right) \wedge\left(\neg a t \Rightarrow \bigwedge_{i=0}^{I-1}\left(e(t)_{i} \Leftrightarrow e\left(t_{2}\right)_{i}\right)\right)
$$

Problems

- Constraints generated can be very long and complicated
- Especially for 64-bits representation.
- Multiplication of two n-bit numbers:
- $\mathrm{n}=16 \Rightarrow 1265$ variables and 4177 clauses.
- $\mathrm{n}=32 \Rightarrow 5089$ variables and 17057 clauses.
- $\mathrm{n}=64 \Rightarrow 20417$ variables and 68929 clauses.
- Heuristics in SAT solvers are biased towards variables appearing frequently
- $\varphi={ }_{\text {def }}(a \cdot b=c) \wedge(a \cdot b \neq c) \wedge(x<y) \wedge(x>y)$
- SAT solver can focus on first part, ignoring the second part, which is much easier.

Incremental bit-flattening

- Idea: add constraints gradually
- Start with propositional skeleton, check satisfiability
- UNSAT \Rightarrow original formula is UNSAT
- SAT \Rightarrow add constraints that are violated by the satisfying assignment.
- Repeat until UNSAT or no constraints are violated by satisfying assignment.
- Incremental bit-flattening can be combined with uninterpreted functions to preserve functional consistency without adding constraints for particular operator

Incremental bit-flattening

```
    1: procedure Incremental-BV-Flattening \((\varphi)\)
2: \(\quad \mathcal{B} \leftarrow e(\varphi)\)
3: \(\quad\) for each \(t_{[/]} \in T(\varphi)\) do
        for \(i \in 0,1, \ldots, l-1\) do
            set \(e(t)_{i}\) to a new Boolean variable
    while TRUE do
        \(\alpha \leftarrow \operatorname{SAT}-\operatorname{Solver}(\mathcal{B})\)
8: \(\quad\) if \(\alpha=\) UNSAT then return UNSAT
9:
10: \(\quad\) if \(I=\emptyset\) then return SAT
11: \(\quad\) Select \(F \subseteq I\)
12:
for each \(t_{[l]} \in F\) do \(\mathcal{B} \leftarrow \mathcal{B} \wedge B V-C o n s t r a i n t(e, t)\)
```

