
Decision Procedures and Verification

Martin Blicha

Charles University

7.5.2018

Arrays

Introduction

I Arrays are fundamental nonrecursive data type in
programming language

I Also used for modelling memory in hardware.

I Analysis of software requires the ability to decide formulas
containing arrays.

I The array theory permits expressions over arrays, which are
formalized as maps from an index type to an element type.

I Index type is denoted by TI , element type by TE , arrays by TA

which is a short-hand for TI → TE .

I Two basic operations on arrays:
1. Reading an element with index i from array a. Value denoted

by a[i].
I array index operator

2. Writing a value to array. Writing a value e to the array a at
index i is denoted by a{i ← e}.

I array update or array store operator

Syntax

I Theories used to reason about indices and elements are called
index theory and element theory, respectively.

I Index theory is usually the theory of linear integer arithmetic.

I Array theory is parametrized by the index theory and the
element theory.

I Syntax is an extension of a combination of index and element
theory.

I We add the following rules for valid terms:

termA : array-identifier | termA{termI ← termE}
termE : termA[termI]

I Equality between array terms is not possible.
I Will be added later.

Semantics

I The meaning of the new symbols is captured by the following
axioms

I ∀a ∈ TA, e ∈ TE , i , j ∈ TI

i = j ⇒ a[i] = a[j] (array congurence)

i = j ⇒ a{i ← e}[j] = e (read-over-write 1)

i 6= j ⇒ a{i ← e}[j] = a[j] (read-over-write 2)

Quantifier-free fragment

I Can express properties of elements of arrays, but not
properties of arrays.

I Has a decision procedure for satisfiability.
I It is enough to consider only conjunctive fragment.

I Intuitively:
I Only read terms: Read terms can be viewed as interpreted

function terms
I Write terms only in the context of a read (equality between

arrays not allowed here). read-over-write axiom can be used to
deconstruct the read-over-write terms.

Decision procedure for quantifier-free conjunctive fragment
I Let ϕ be a conjunction of literals in theory of arrays.
I Assumption: there is a decision procedure for quantifier-free

fragment of combination of index theory, element theory and
uninterpreted functions.

Algorithm QFA-DP

1. If ϕ does not contain any write terms, associate with each
array variable a a fresh function symbol fa and replace each
read a[i] with fa(i). Decide the resulting formula using the
assumed decision procedure.

2. Select some read-over-write term a{i ← e}[j] and split on two
cases:

2.1 Replace ϕ[a{i ← e}[j]] with ϕ[e]∧ i = j and recurse. If answer
is SAT, return SAT.

2.2 Replace ϕ[a{i ← e}[j]] with ϕ[a[j]] ∧ i 6= j and recurse. If
answer is SAT, return SAT.

2.3 If both cases were UNSAT, return UNSAT.

Array property fragment

I Full theory of arrays (with quantifiers) is undecidable in
general.

I There is a large, useful fragment that is decidable: array
property fragment

I Allows universal quantification over array indices, with some
restrictions.

Definition (Array property)

Array property is a formula of the form
∀i1, . . . , ik .ϕ(i1, . . . , ik)→ ψ(i1, . . . , ik), where i1, . . . , ik is a list of
variables and ϕ,ψ are the index guard and value constraint,
respectively.

Array property fragment

Assumption: index theory is linear integer arithmetic.

Definition
Index guard is a formula syntactically constructed according to the
following grammar:

iguard : iguard ∧ iguard | iguard ∨ iguard | iterm ≤ iterm | iterm = iterm

iterm : i1 | . . . | ik | term

term : integer -constant | integer -constant · index-identifier |
term + term

where index-identifier used in term cannot be one of i1, . . . , ik .

Additionaly, a universally quantified index variable can occur in
value constraint ψ only in an array read.
Array property fragment consists of Boolean combinations of
quantifier free array formulas and array properties.

Array properties
Example

I Extensionality is an array property.
I Two arrays are equal if all their elements are equal.
I a = b iff ∀i .a[i] = b[i]

I Bounded and unbounded sorted array is an array property.
I ∀i , j .l ≤ i ≤ j ≤ u ⇒ a[i] ≤ a[j]

I Partitioned array is an array property.
I ∀i , j .l1 ≤ i ≤ u1 < l2 ≤ j ≤ u2 ⇒ a[i] ≤ a[j]

Write rule

I Deconstructs write terms
I Encoding the read-over-write axiom into the formula.

ϕ[a{i ← e}]
ϕ[a′] ∧ a′[i] = e ∧ ∀j .j 6= i ⇒ a[j] = a′[j]

for fresh a′ (write)

I After application, the resulting formula contians at least one
fewer write terms.

I To meet the syntactic constraint rewrite the inequality as
j ≤ i − 1 ∨ i + 1 ≤ j .

Exists rule

I Removes existential quantifiers by introducing fresh variables.
I Which are implicitly existentially quantified when deciding

satisfiability.

ϕ[∃ī .ψ[ī]]

ϕ[ψ[j̄]]
for fresh j̄ (exists)

I Existential quantifiers can occur in the formula when it
contains a negated array property.

From universal quantification to finite conjunction

I The main idea is to select a set of symbolic index terms on
which to instantiate all universal quantifiers.

I Construct an index set I for input formula ϕ

1. Add all expressions used as an array index in ϕ that are not
quantified variables.

2. Add all expressions used inside index guards in ϕ that are not
quantified variables.

3. If ϕ contains none of the above, I is {0} in order to obtain a
nonempty set of index expressions.

I Replace universal quantification ∀i .P(i) with
∧
i∈I

P(i).

Decision procedure for array property fragment

Algorithm APF-DP

1. Convert ϕ to NNF

2. Remove write terms using write rule.

3. Remove existential quantifiers using exists rule.

4. Reduce universal quantification to finite conjunction,
instantiating symbolic index terms from corresponding index
set.

5. Replace array read terms by uninterpreted functions.

6. Decide the resulting (quantifier-free) formula in index and
element theories with uninterpreted functions.

Pointer logic

Simple Pointer Logic
Syntax

fla : fla ∧ fla | fla ∨ fla | ¬fla | atom

atom : pointer = pointer | term = term | pointer < pointer |
term < term

pointer : pointer -identifier | pointer + term |&identifier |& ∗ pointer |
∗ pointer | NULL

term : identifier | ∗ pointer | term op term | integer -constant |
identifier [term]

op : + | −

I Assumes variables of pointer type and variables of type integer
or array of intefer.

I Allows pointer arithmetic, does not allow conversion between
pointers and integers.

Pointer logic formulas - examples

I The following expressions are well-formed according to the
grammar:

I ∗(p + i) = 1
I ∗(p + ∗p) = 0
I p = q ∧ ∗p = 5
I ∗ ∗ ∗ ∗ ∗p = 1
I p < q

I The following expressions are not well-formed according to the
grammar:

I p + i
I p = i
I ∗(p + q)
I ∗1 = 1
I p < i

Memory model

Definition (Memory model)

Memory model is an address space A corresponding to a
subinterval of {0, 1, . . . ,N − 1}. Each address identifies a memory
cell that can store a single data word. The set of data words is
denoted by D. A memory valuation M : A −→ D is a mapping
from a set of adresses A into domain D of data words.

Definition (Memory layout)

Let V denote the set of variables. A memory layout L : V −→ A is
a mapping from each variable v ∈ V to an address a ∈ A. The
address of v is also called the memory location of v .

Semantics

I Example of a semantics with respect to a specific memory
layout L and specific memory valuation M

I Reduction to integer arithmetic and array logic
I M and L are treated as data types.

Definition (Semantics of simple pointer logic)

Let LP denote the set of pointer logic expressions, and let LD
denote the set of expressions permitted by the logic for the data
words. We define a meaning for e ∈ LP using the function
J·K : LP −→ LD . The function JeK is defined recursively. The
expression e ∈ LP is valid if and only if JeK is valid.

Semantic Translation

Jf1 ∧ f2K
.

= Jf1K ∧ Jf2K
J¬f K .

= ¬Jf K
Jp1 = p2K

.
= Jp1K = Jp2K where p1 and p2 are pointer expressions

Jp1 < p2K
.

= Jp1K < Jp2K where p1 and p2 are pointer expressions

Jt1 = t2K
.

= Jt1K = Jt2K where t1 and t2 are terms

Jt1 < t2K
.

= Jt1K < Jt2K where t1 and t2 are terms

JpK .
= M[L[p]] where p is a pointer identifier

Jp + tK .
= JpK + JtK where p is a pointer identifier and t is a term

J&vK .
= L[v] where v is a variable

J& ∗ pK .
= JpK where p is a pointer expression

JNULLK .
= 0

JvK .
= M[L[v]] where v is a variable

J∗pK .
= M[JpK] where p is a pointer expression

Jt1 op t2K
.

= Jt1K op Jt2K where t1 and t2 are terms

JcK .
= c where c is an integer constant

Jv [t]K .
= M[L[v] + JtK] where v is an array identifier and t is a term

Semantics - example

Example

Consider the following expression where a is an array identifier:
∗(&a + 1) = a[1]. Its semantic definition expands as follows:

J∗(&a + 1) = a[1]K⇐⇒ J∗(&a + 1)K = Ja[1]K
⇐⇒ M[J&a + 1K] = M[L[a] + J1K]

⇐⇒ M[J&aK + J1K] = M[L[a] + 1]

⇐⇒ M[L[a] + 1] = M[L[a] + 1]

The resulting formula is valid (TRUE for any M, L), thus so is the
original one.

Decision procedure for simple pointer logic

I Formulas generated by this semantic translation contain array
read operator and linear arithmetic over type of indices (e.g.
integers).

I Decision procedure for pointer logic translates its input
formula and calls a decision procedure for combined logic of
linear arithmetic over integers and arrays of integers. The
returned answer is also correct answer for the original formula.

	Arrays
	Pointer logic

