Decision Procedures and Verification

Seminar 1

- 1. (0.5 points) Convert $\neg x \leftrightarrow (y \land \neg z)$ to CNF using Tseitin's encoding.
- 2. (1 point) Consider (simple) original and optimized version of a program below. Transform the problem of an equivalence of these two programs to a SAT problem.

Original program	Optimized program
if (!a && !b) h();	$\mathbf{if}(\mathbf{a}) \mathbf{f}(\mathbf{)};$
else if $(!a)$ g $();$	else if (b) g $()$;
else f();	else $h();$

- 3. (1 point) Model Sudoku puzzle as a SAT problem.
- 4. (1 point) Let φ be a formula in negation normal form (NNF) and α an assignment of its variables. Let $pos(\alpha, \varphi)$ is a set of positively evaluated literal in φ under α . For every assignment β such that $pos(\alpha, \varphi) \subseteq pos(\beta, \varphi)$ it holds that if $\alpha \models \varphi$ then $\beta \models \varphi$. Give a proof.
- 5. (1 point) In Tseitin encoding replace equivalence among fresh variables and subformula with left-to-right implication. Is the resulting CNF formula equisatisfiable with the original one? Is it equisatisfiable if the original formula is in NNF? Prove your answers.
- 6. (1 point) Let G = (V, E) be an undirected graph. Suggest a propositional formula that is satisfiable it and only if G contais a Hamiltonian cycle.