
Decision Procedures and Verification

Seminar 8

1. (1 point) [Invariant checking] Show how loop invariants can be checked, where the loop is given in
the form of a do-while template and when it is given in the form of a for template.

2. (1 point) [SSA] Show the SSA form corresponding to the unfolding of the following program. (Unfold
for-loop 3 times and inline function call.) Add assertion after the loop that x < y and construct the
formula representing this program.

int main(int x, int y)
{

int result;
if(x < y)

x = x + y;
for (int i = 0; i < 3; ++i)
{

y = x + Next(y);
}
result = x + y;
return result;

}

int Next(int x){
return x + 1;

}

3. (1 point) [Invariants] Consider the piece of code. Use the over-approximation technique to check its
safety. Find and use invariant to refine the abstraction if necessary.

state_of_lock = unlocked;
do {

assert(state_of_lock == unlocked);
state_of_lock = locked;
old_count = count;
request = GetNextRequest ();
if (request != NULL) {

ReleaseRequest(request);
assert(state_of_lock == locked);
state_of_lock = unlocked;
ProcessRequest(request);
count = count + 1;

}
}
while(old_count != count);
assert(state_of_lock == locked);
state_of_lock = unlocked;

4. (1 point) [SSA with pointers] Assume that the program only contains variables of type int and
int*, and that dereferenced pointers are only read. Explain how to build SSA with this restriction.
Apply your method to the program below.

void my_function(int *p) {
int j = 0, *q = &j;
j += *p + *q;

}

