
File System Example

This document contains a short plain text description (what to specify, important design decisions) and
fragments of a possible solution (to illustrate some typical approaches).

Description

Individual files should have the following attributes: name, size, timestamp, and access privileges (for pro-
cesses or users).

Files will be accessed either by processes or by users (or both?).

List of all operations:

• Create (new file)

• Destroy (remove file)

• Open file

• Close file

• Read (some data)

• Write (some data)

• Add (new data/chunk)

• Delete (some data)

Granularity of data access: chunks identified by some keys (or by their position and length), or individual
characters at a given position (index).

Before reading or modifying a file, the user/process must open it. Design question: should we allow multiple
processes to open the file for reading at the same time, or allow just exclusive access. Access for writing
must be always exclusive.

Closing of a file will release it.

System state

First I show fragments of a specification for the system state.

Individual files may be specified in this way. Here we assume that they are made of chunks, where every
chunk has a unique key.

Global basic data types:

[Key ,Data]

Alternative: use Index or Position instead of Key .

We can model the contents of a file by a partial function.

File
contents : Key 7→ Data

The whole file system could be specified as follows. We need a global data type Name.

1

A key component of the system state is the set of currently open files.

FileSystem
file : Name 7→ File
openfiles : PName

openfiles ⊆ dom file

We must also specify the initial content (empty) of a file and the initial state of the whole file system.

FileInit
File ′

contents ′ = ∅

SystemInit
System ′

file ′ = ∅

Additional basic global data types: ProcessID .

Operations

We have to define at least some operations.

The operation OpenFile has two parameters: a target file and process that accesses the file. Precondition
(constraint): the given file is not yet open. Effect of the operation is change of the set of open files.

OpenFile
∆FileSystem
p? : ProcessID
f ? : File

f ? /∈ dom openfiles

openfiles ′ = openfiles ∪ {f ?}

Design choice: we could also track the process which opened the file. Then, openfiles would be a relation
⊆ File × ProcessID .

A part of the specification of the operation Create will be the schema FileInit , because each new file must
be initialized.

Operation local read of some data.

Read0
ΞFile
k? : Key
d ! : Data

k? ∈ dom contents

d ! = contents(k?)

2

The operation does not modify the file. Input parameter is the key (and it must be valid). Output is the
read data value.

Similarly, we can define the operation Write0 that rewrites an existing data chunk. It will change the
function (mapping) contents in this way: contents ′ = contents ⊕ {k? 7→ d?}.
Operation Add0. Constraint: k? /∈ dom contents. Effect: contents ′ = contents ∪ {k? 7→ d?}.
Operation Delete0. Remove the given (key,data) pair from contents. Approach: contents ′ = {k?}−Ccontents
(drop k? from the domain of the function contents).

Operations such as Create and Destroy may extend the schema FileManage that contains ∆FileSystem,
n? : Name, and the constraint openfiles ′ = openfiles.

Error handling

To properly model the action of opening a file, we must also cover the error situations. One possible approach
is to define a schema for each error situation that may occur. The schema describes conditions under which
the error occurs and also the proper response.

We will define schemas AlreadyOpen and Unauthorized (both just querying the current state). Constraints
may look like this: f ? ∈ dom openfiles, (f ?, p?) /∈ permissions. Finally, we define a total operation
T OpenFile =̂ OpenFile ∨ AlreadyOpen ∨ Unauthorized . This illustrates usage of the schema calculus.

Errors may occur also in the case of operations for reading and writing data — for example, ”key not in
use” or ”index out of bounds”.

We can introduce a global type Report .

Report ::= keyNotInUse | okay

And then we may define the schemas KeyError , KeyNotInUse and Success. This also illustrates how to
include schemas (KeyError in KeyNotInUse).

KeyError
ΞFile
k? : Key
r ! : Report

KeyNotInUse
KeyError

k? /∈ dom contents

r ! = keyNotInUse

contents ′ = contents

Success
r ! : Report

r ! = okay

Full robust versions of operations such as read and write of/to some data chunk, including reports (success
versus errors) are then defined as follows (using schema calculus).

Read =̂ (Read0 ∧ Success) ∨ KeyNotInUse

3

Implementation normally cannot (and will not) separate these aspects (correct behavior, error handling).
This is an example of abstraction possible when a high-level specification language is used.

Note that one could write specification of the robust version of the read operation directly, but that would
be much less clear and readable. It is much better to create a modular specification.

For some of the operations we must also capture some additional error states: file exists, file does not exist,
file is not open, etc.
A possible approach is to extend the data type Report (add some values) and introduce the schema FileError
(similar to KeyError). Then we can introduce schemas like FileExists that will include FileError , assign par-
ticular values to the variable r ! : Report , and define constraints that represent the corresponding situations.
The really full operations Read , Write, Add , and Delete will be defined in this way:

FileRead =̂ Read ∨ FileIsNotOpen ∨ FileDoesNotExist

Also the file management operations, such as Open, Close, Create, and Destroy , will be specified like this:

Open =̂ (Open0 ∧ Success) ∨ FileIsOpen ∨ FileDoesNotExist

The general advantage of this approach, based on schema calculus, is that we can separately describe (1) the
behavior for valid input and (2) error handling, and then combine all schemas into a complete specification.

This separation of normal behavior from error handling is just the basic (and most common) kind of modu-
larization possible with schema calculus and Z.

An example of more complex modularization is framing. Operations defined for one entity, such as unnamed
single file, are transformed into operations on a named entity in the whole file system. For example, one
schema may specify reading of data from a given file, and another schema may describe access to a named
file in some directory. Both schemas will be merged to get a specification for the operation of reading data
from a named file. Specification of access restrictions (who is allowed to perform the given operation) may
also be separated from the actual operation (what it does).

4

