Formal Foundations of
Software Engineering

http://d3s.mff.cuni.cz

Distributed and Martin Necasky
Dependable
Pavel Parizek

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics



Goals of the course

* Show methods and tools for specification
and modeling of

= Requirements
= Architecture
= System behavior

* Show methods, languages and tools for

= More formal design, specification and prototyping
of software systems



Structure

®* Lectures
= Basic concepts (“theory”)
= Languages (syntax, usage)
= Tool demo & examples

°* Labs

= Small practical tasks
= Playing with tools



Why you should attend

* Get some knowledge about formal methods
= Commonly used languages
= Benefits & limitations

* Usage of formal methods can actually help you
in software development practice



Contents

®* General introduction to formal methods

* Algebraic specification techniques (CASL)
* Rewriting systems (Maude, OBJ3)

°* Model-oriented languages (Z, VDM, Alloy)
* UML (modeling) & OCL (specification)

* Petri nets (modeling concurrent systems)
°* Temporal & dynamic logics (TLA+)

°* Domain-specific languages (DSLs)



Grading

* Homeworks
= Topics: Maude, Alloy, UML/OCL, Petri nets
= Each awarded with 0-20 points
® You need to submit at least 2 for “zapocet”

®* Final exam
= Basic principles, theory, comparing approaches
= Awarded with 0-30 points

® Scale
= 71-110: excellent
= 55-70: very good
= 41-54: good (pass)
= 40 and less: failure



Contact

* Web: http://d3s.mff.cuni.cz/teaching/ntin043

* Pavel Parizek
= parizek@d3s.mff.cuni.cz
" room 202

®* Martin Necasky

= necasky@ksi.mff.cuni.cz
= room 209


http://d3s.mff.cuni.cz/teaching/foundations_software_engineering/

Related courses

® System Behavior Models and Verification (NSWI1101)
= http://d3s.mff.cuni.cz/teaching/nswil01

®* Program Analysis and Code Verification (NSWI1132)
= http://d3s.mff.cuni.cz/teaching/nswil32



http://d3s.mff.cuni.cz/teaching/nswi101
http://d3s.mff.cuni.cz/teaching/nswi132

General introduction to formal methods



What are formal methods ?

* Mathematical techniques
* Supported by tools

®* Languages
= Specification notation

®* Formal syntax & semantics

= Reasoning mechanism

°* Enable rigorous software development

10



Formal description of software systems

° |nterface perspective

= Specifying requirements and desired properties

°* Implementation perspective

= Modeling internal behavior

® Characteristics
= Expression in some formal language
= Typically at certain level of abstraction
= Precise, consistent, and unambiguous

11



What are formal methods good for

* Precisely capturing user’s requirements

°* Modeling behavior of critical subsystems

* Validation (testing, analysis, verification)

°* Generating code from specification/models
= |terative refinement (transformations)
= Model-driven engineering (MDE)

12



Usage pattern

1. Manually write a formal specification (model)
2. Semi-automatically validate & fix all problems

3. lteratively transform (refine) into real code
= Allow provably correct refinement steps
= Implementation correct-by-construction

13



Benefits

* General: improved quality of software systems

°* Enable system validation at very early stage
°* Detecting many issues (but some remain!!)

= ambiguity, inconsistency, plain bugs, missing pieces

* Better resilience against non-standard states

* Required for mission/safety-critical systems

14



Limitations

* |Insufficient scalability to realistic systems

* High overall costs (man-power, time)

15



Practice: critical systems

* Application domains

= transportation, military, healthcare, tele-com

* Small or middle-sized
= 10-1000 KLOC

* Very high cost of errors

16



Case study: subway line in Paris

®* Development process
1. Abstract models and specifications in B
2. lterative refinement to concrete models
3. Transformation to source code in ADA

® Quantitative metrics
= Formal specification: 100 KLOC in B
= Source code: 87 KLOC in ADA
= Validation: proved 28K claims and found many bugs

®* No error found after the deployment !!

17



MDE & formal methods

* MDE: model-driven engineering

= Automated code generation

°* Model-based testing

°* Domains: embedded systems

= automotive, industry manufacturing robots

18



Disclaimer

* Formal methods do not guarantee correctness

= "a formally verified program is only as good as its
specification”

° |tis very easy to create a bad specification

= Problems: incompleteness, inconsistency, typos

°* Remedy: search for bugs & validate everything

19



Ten Commandments of Formal Methods

. Choose an appropriate notation

. Formalize, but do not over formalize

. Estimate costs

. Have a formal methods guru on call

. Not abandon traditional development methods
. Document sufficiently

. Not compromise quality standards

. Not be dogmatic

. Test, test, and test again

10. Reuse

O 00O N O 00 b WIN B

20



Design by Contract

°* Granularity: procedures, objects

® Preconditions
®* Postconditions
® |nvariants

* Methodology
= Define contracts by hand
= Use tool for verification

21



