
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Formal Foundations of 
Software Engineering

Martin Nečaský

Pavel Parízek



Goals of the course

2

Show methods and tools for specification
and modeling of

Requirements

Architecture

System behavior

Show methods, languages and tools for

More formal design, specification and prototyping 
of software systems



Structure

3

Lectures

Basic concepts (“theory”)

Languages (syntax, usage)

Tool demo & examples

Labs

Small practical tasks

Playing with tools



Why you should attend

4

Get some knowledge about formal methods

Commonly used languages

Benefits & limitations

Usage of formal methods can actually help you 
in software development practice



Contents

5

General introduction to formal methods

Algebraic specification techniques (CASL)

Rewriting systems (Maude, OBJ3)

Model-oriented languages (Z, VDM, Alloy)

UML (modeling) & OCL (specification)

Petri nets (modeling concurrent systems)

Temporal & dynamic logics (TLA+)

Domain-specific languages (DSLs)



Grading

6

Homeworks
Topics: Maude, Alloy, UML/OCL, Petri nets
Each awarded with 0-20 points
You need to submit at least 2 for “zápočet”

Final exam
Basic principles, theory, comparing approaches
Awarded with 0-30 points

Scale
71-110: excellent
55-70: very good
41-54: good (pass)
40 and less: failure



Contact

7

Web: http://d3s.mff.cuni.cz/teaching/ntin043

Pavel Parízek

parizek@d3s.mff.cuni.cz

room 202

Martin Nečaský

necasky@ksi.mff.cuni.cz

room 209

http://d3s.mff.cuni.cz/teaching/foundations_software_engineering/


Related courses

8

System Behavior Models and Verification (NSWI101)

http://d3s.mff.cuni.cz/teaching/nswi101

Program Analysis and Code Verification (NSWI132)

http://d3s.mff.cuni.cz/teaching/nswi132

http://d3s.mff.cuni.cz/teaching/nswi101
http://d3s.mff.cuni.cz/teaching/nswi132


General introduction to formal methods

9



What are formal methods ?

10

Mathematical techniques

Supported by tools

Languages

Specification notation

Formal syntax & semantics

Reasoning mechanism

Enable rigorous software development



Formal description of software systems

11

Interface perspective

Specifying requirements and desired properties

Implementation perspective

Modeling internal behavior

Characteristics

Expression in some formal language

Typically at certain level of abstraction

Precise, consistent, and unambiguous



What are formal methods good for

12

Precisely capturing user’s requirements

Modeling behavior of critical subsystems

Validation (testing, analysis, verification)

Generating code from specification/models

Iterative refinement (transformations)

Model-driven engineering (MDE)



Usage pattern

13

1. Manually write a formal specification (model)

2. Semi-automatically validate & fix all problems

3. Iteratively transform (refine) into real code

Allow provably correct refinement steps

Implementation correct-by-construction



Benefits

14

General: improved quality of software systems

Enable system validation at very early stage

Detecting many issues (but some remain!!)

ambiguity, inconsistency, plain bugs, missing pieces

Better resilience against non-standard states

Required for mission/safety-critical systems



Limitations

15

Insufficient scalability to realistic systems

High overall costs (man-power, time)



Practice: critical systems

16

Application domains

transportation, military, healthcare, tele-com

Small or middle-sized

10-1000 KLOC

Very high cost of errors



Case study: subway line in Paris

17

Development process

1. Abstract models and specifications in B

2. Iterative refinement to concrete models

3. Transformation to source code in ADA

Quantitative metrics

Formal specification: 100 KLOC in B

Source code: 87 KLOC in ADA

Validation: proved 28K claims and found many bugs

No error found after the deployment !!



MDE & formal methods

18

MDE: model-driven engineering

Automated code generation

Model-based testing

Domains: embedded systems

automotive, industry manufacturing robots



Disclaimer

19

Formal methods do not guarantee correctness

"a formally verified program is only as good as its 
specification“

It is very easy to create a bad specification

Problems: incompleteness, inconsistency, typos

Remedy: search for bugs & validate everything



Ten Commandments of Formal Methods

20

1. Choose an appropriate notation

2. Formalize, but do not over formalize

3. Estimate costs

4. Have a formal methods guru on call

5. Not abandon traditional development methods

6. Document sufficiently

7. Not compromise quality standards

8. Not be dogmatic

9. Test, test, and test again

10. Reuse



Design by Contract

21

Granularity: procedures, objects

Preconditions

Postconditions

Invariants

Methodology
Define contracts by hand

Use tool for verification


