Template for definitions of classes in Object-Z:

— ClassName[generic parameters)
visibility list
inherited classes
type definitions
constant definitions
state schema
initial state schema
operation schemas

history invariant

The state schema does not have any name, and it is implicitly (automatically) included in the initial state
schema and in every operation associated with the class. In the case of operations, also the primed state
schema (variables with apostrophe) is included automatically.

Examples of two class definitions follow:

_ Vehicle

[(curspeed, Accelerate)

manufacturer : Company

maxspeed : INT

mazspeed > 0 A mazspeed < 500

curspeed : R

curspeed < mazspeed

__INnIT
curspeed = 0

__ Accelerate
A(curspeed)
dspeed? : R

curspeed’ = curspeed + dspeed?

— OpenDoor
curspeed = 0

The class Vehicle has two constants (manufacturer and maxspeed), one state variable (curspeed), an initial
state, and the operation Accelerate. Its visibility list (at the beginning) says that just the variable curspeed
and the operation Accelerate represent the public interface of Vehicle. The A-list must enumerate all state
variables that the operation updates. We defined just the precondition (curspeed = 0) for the operation
OpenDoor because it does not change any state variable.



__Car
Vehicle

fuel : R
engine : Engine
lights : Lights

_INIT
curspeed = 0
fuel = 50

To declare inheritance, we just have to write the name of a superclass (Vehicle) at the beginning of the
schema for our subclass (Car). Note also that the schema for Car introduces two new components: engine
and lights.

ElectricCar
Car[batterylevel / fuel]

We can also rename some of the state variables. For example, here we use batterylevel instead of fuel.

Standard dot-notation is used (1) to access fields of state variables inside schemas, and (2) to execute
operations on the objects pointed to by state variables, like in the mainstream object-oriented programming
languages (Java, C#, C++).

Object-Z supports three ways of defining operations. The first option is to create a normal schema, the
second option is delegation to an operation called on a particular state variable (component), and the last
is through composition of multiple schemas. Examples of all the options follow.

__Car

—INIT
curspeed = 0
lights.mode = dim

__ Accelerate
A(curspeed)
dspeed? : R

curspeed’ = curspeed + dspeed?
engine.IncreaseRevs

TurnOff = engine.Stop

TurnOn = engine.Start N lights. TurnOn

Specification of the body (effects) of some operation associated with a class may involve calls of operations
upon components (variables) of its state. These calls should be typically defined in the constraint part of
the enclosing schema. For example, we can add the call of engine.IncreaseRevs to the operation Accelerate.
We can also redefine (override) the specifications for operations in subclasses, like we did for Accelerate here.



