Summary

http://d3s.mff.cuni.cz

Pavel Parízek

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

How to create formal specifications

- Algebraic languages (Maude)
 - prototyping and testing
- Model-based languages: high-level design combined with
 - theorem proving (Z)
 - classic testing (VDM)
 - SAT analysis (Alloy)
- Concurrency and temporal behavior
 - Petri nets, TLA+
- Industry standards: UML and OCL

Experience

- Creating high-level formal specifications, models, and tools enables:
 - thinking about the system at the domain level
 - ignore low-level implementation details (in Java or C)
 - validation and early detection of design errors
 - better understanding of the complex behaviors

- Usage of formal models allows easier
 - validation of changes (what-if analysis)
 - especially when compared to implementation (code)

