
Middleware Labs: Java RMI

Petr Tůma Vojtěch Horký Antońın Steinhauser
Vladiḿır Matěna

March 6, 2019



General Information

– Labs

– Every other week
– 5 labs total, 5 middleware technologies
– Wednesday, 12.20 (SU2)
– See the calendar on the web

– Web

– http://d3s.mff.cuni.cz/teaching/middleware/

– Mailing list

– nswi080@d3s.mff.cuni.cz

– https://d3s.mff.cuni.cz/mailman/listinfo/nswi080

http://d3s.mff.cuni.cz/teaching/middleware/
https://d3s.mff.cuni.cz/mailman/listinfo/nswi080


Requirements for Getting the Credits

– Details on the web page

– At least 7 points for the semester

– Standard tasks

– “Hello World” in various technologies ;-)

– Alternative tasks

– Less boring than the “Hello World” stuff ;-)



Standard Tasks

– 2 points for solving the task correctly and in time

– 1 point for incorrect submission in time

– Fixed submission presented at next labs

– 1 point for missed deadline (max before next labs)

– Must show at the labs

– 5 tasks together, each for 2 points



Alternative Tasks

– Only after previous consultation

– Contact Petr Tůma for details (task, points, deadlines)

– Preferred way to get credit

– 2 to 6 points (depending on the difficulty)

– Deadline: end of summer examination period

– Later only in special cases

Topics

– Benchmark (2), set of benchmarks (4 – 6)

– Your very own topic (?)



Be Original – No Cheating!

– This is not a mandatory subject

– Go cheat somewhere else

– You do not want to learn how to modify someone else’s code

– You want to learn middleware technologies

– If the tasks seems boring to you . . .

– . . . settle for an alternative.



Submission (generic notes)

– Working implementation

– Answer all the questions from the assignment

– By e-mail

– Deadline is on the web

– Make sure it works in the lab downstairs



Submission (generic notes) II

– Documentation

– README with key decisions overview
– Notes on compiling/running

– The submission shall be easy to start

– No need for Maven or Ant script
– No need for packages etc.
– Updated versions of the run-* scripts
– Do not send stubs, compiled files or Eclipse .projects



Java RMI



Task: Distance Between Graph Nodes

public interface Searcher {

public int getDistance(Node from , Node to);

}

public interface Node {

Set <Node > getNeighbors ();

void addNeighbor(Node neighbor );

}

Node[] graph;



Local Implementation

– Interfaces Node and Searcher

– Classes NodeImpl and NodeSearcher

– Java main() is in the Main class

– Measures the speed on a random graph



Task

– Extend the provided implementation to search the graph
remotely

– local / remote nodes
– local / remote searcher

– Compare speed

– on sparse / dense graphs
– on a single computer / over the network
– different values of a parameter of the algorithm



Task (cont.)

– Read the task description on the web

– Read these slides

– Avoid common problems

– Report problems

– Well before submission
– Use solely the mailing list for questions
– The same problem might affect more people



Remote Searcher

– Extend the Searcher interface (see Example)

– Interface java.rmi.Remote

– Exception of type java.rmi.RemoteException

– Remotely accessible object (see ExampleImpl)

– Must be exported – 2 ways
– Derive from java.rmi.server.UnicastRemoteObject

– Export ensured by parent constructor

– Call UnicastRemoteObject.exportObject(obj) manually

– Does not handle semantics of hashCode(), equals(),
toString() — not a problem with Searcher (just one
instance)



Remote Searcher (cont.)

– Executable server (see ExampleServer)

– Create instance (and export) of the remote object
– Register with java.rmi.Naming.[re]bind()

– Extend Main with RMI (see ExampleClient)

– Get reference to a remote Searcher

– java.rmi.Naming.lookup(path)

– Add call to remote Searcher.getDistance() with local
objects NodeImpl in searchBenchmark() method

– How does the server access the neighbors of the passed nodes?



Remote Node Objects

– Extend interface Node with RMI (like Searcher)

– Class inherits from UnicastRemoteObject and implements
Node

– To allow for hashCode(), equals(), toString()
– Copy/paste + edit is enough

– We want that local Nodes from previous task still behaved
locally



Remote Node Objects (cont.)

– How to create and return instances for client requests?

– Implement NodeFactory with method createNode()

– Similar to remote Searcher – interface with RMI,
implementing class, create and call Naming.bind() inside the
existing server

– Do not create a standalone server, we want just one for the 4th

variant

– Client gets the reference using lookup() and also creates the
remote Node objects together with the local graph

– How does the local Searcher access the remote Nodes?

– What exactly does the NodeFactory return to the client?



Remote Searcher on Remote Nodes

– Everything is ready, just add this variant to
searchBenchmark() and compare the speed

– How does the Searcher on server access the Node objects on
(the same) server?



Impact Of the Network

– So far, client and server were running on the same machine

– Overhead of RMI communication, but no network latency

– Run on more machines

– Server on the machine next to you, client on yours
– Change paths in [re]bind() and lookup()

– Remote machine name instead of localhost
– Modify to use args[0]

– Run rmiregistry and Server in SSH session on the remote
machine

– Run the client locally
– Beware of CLASSPATH



Passing by Value vs. Passing by Reference

– Previous tasks solve “extreme” cases

– How about combining both approaches?

– Idea: “batch” transfer of bigger parts of the graph

– getTransitiveNeighbors(int distance)

– Returns all neighbors up to some distance

– Use the getDistanceTransitive method of the Searcher

interface

– In each step, requests neighbors up to the specified distance

– Try different values for the distance parameter

– Compare measured times with previous variants



Implementation Notes

Extend single project, do not create 4 separate ones.

– Interface hides different implementations

– Even Remote interface can be used locally

– Just catch exceptions that would never occur

– E.g. remote graph is just another array Node[]

– Easy to have the same (logically) local and remote one
– Similarly with Searcher

– Measure everything in one run to ease comparison

– Just add measuring and a column to results in
searchBenchmark()



Building – the make Script

– javac (with Eclipse unnecessary)

– rmic

– Deprecated in Java 8
– Creates stubs for remote objects
– Parameters are class names implementing the remote objects
– keep does not remove the generated stub sources
– Sometimes unnecessary

– Client can access the classes (yes in our task)
– Classes inherit from UnicastRemoteObject

– Subtle differences for generated stubs and proxies

– equals()



Launching

– Use launcher scripts from the Hello World example

– Important parameters
– Simple Run as. . . /Application in Eclipse is not enough!

– But can be set-up to work as well



Launching (cont.)

– rmiregistry application – run in background

– Port in use? – use different port number (> 1024)

– Edit path in calls to [re]bind() and lookup()

– localhost becomes localhost:1234

– For simplicity – it has the same CLASSPATH

– We want to avoid setting permissions for codebase etc.

– Starting the server – see run-server script

– Starting the client – see run-client script



Submission

– Working implementation

– Documentation

– Answer all the questions from the assignment
– Describe measurement results

– By e-mail (deadline is on the web)

– Make sure it works in the lab downstairs

– The submission shall be easy to start

– Use the provided implementation
– No need for Maven or Ant script
– Do not add packages etc.
– Updated versions of the run-server scripts


