Middleware Labs: Java RMI

Petr Tima Vojtéch Horky Antonin Steinhauser
Vladimir Maténa

March 6, 2019

Department of
Distributed and
Dependable

General Information

— Labs

Every other week

5 labs total, 5 middleware technologies
Wednesday, 12.20 (SU2)

See the calendar on the web

- Web
— http://d3s.mff.cuni.cz/teaching/middleware/

— Mailing list

— nswi080@d3s.mff.cuni.cz
— https://d3s.mff.cuni.cz/mailman/listinfo/nswi080

Department of
Distributed and
Dependable

http://d3s.mff.cuni.cz/teaching/middleware/
https://d3s.mff.cuni.cz/mailman/listinfo/nswi080

Requirements for Getting the Credits

Details on the web page
At least 7 points for the semester
Standard tasks

— “Hello World" in various technologies ;-)

Alternative tasks
— Less boring than the “Hello World” stuff ;-)

Department of
Distributed and
Dependable

Standard Tasks

2 points for solving the task correctly and in time
1 point for incorrect submission in time

— Fixed submission presented at next labs
1 point for missed deadline (max before next labs)

— Must show at the labs

5 tasks together, each for 2 points

Department of
Distributed and
Dependable

Alternative Tasks

Only after previous consultation

— Contact Petr Tima for details (task, points, deadlines)

Preferred way to get credit

2 to 6 points (depending on the difficulty)

Deadline: end of summer examination period

— Later only in special cases

Topics
— Benchmark (2), set of benchmarks (4 - 6)

— Your very own topic (?)

Department of
Distributed and
Dependable

Be Original — No Cheating!

This is not a mandatory subject

Go cheat somewhere else

You do not want to learn how to modify someone else's code
You want to learn middleware technologies

If the tasks seems boring to you ...

...settle for an alternative.

Department of
Distributed and
Dependable

Submission (generic notes)

Working implementation
Answer all the questions from the assignment
By e-mail

— Deadline is on the web

Make sure it works in the lab downstairs

Department of
Distributed and
Dependable

Submission (generic notes) Il

— Documentation

— README with key decisions overview
— Notes on compiling/running

— The submission shall be easy to start

— No need for Maven or Ant script

— No need for packages etc.

— Updated versions of the run-* scripts

— Do not send stubs, compiled files or Eclipse .projects

Department of
Distributed and
Dependable

Java RMI

Task: Distance Between Graph Nodes

public interface Searcher {
public int getDistance(Node from, Node to);

}

public interface Node {

Set<Node> getNeighbors ();

void addNeighbor (Node neighbor);
}

Node [] graph;

Department of
Distributed and
Dependable

Local Implementation

— Interfaces Node and Searcher

— Classes NodeImpl and NodeSearcher
— Javamain() is in the Main class

— Measures the speed on a random graph

Department of
Distributed and
Dependable

Task

— Extend the provided implementation to search the graph
remotely

— local / remote nodes
— local / remote searcher

— Compare speed

— on sparse / dense graphs
— on a single computer / over the network
— different values of a parameter of the algorithm

Department of
Distributed and
Dependable

Task (cont.)

— Read the task description on the web
— Read these slides

— Avoid common problems
— Report problems

— Well before submission
— Use solely the mailing list for questions
— The same problem might affect more people

Department of
Distributed and
Dependable

Remote Searcher

— Extend the Searcher interface (see Example)

— Interface java.rmi.Remote
— Exception of type java.rmi.RemoteException

— Remotely accessible object (see ExampleImpl)

— Must be exported — 2 ways
— Derive from java.rmi.server.UnicastRemoteObject

— Export ensured by parent constructor
— Call UnicastRemoteObject.exportObject (obj) manually

— Does not handle semantics of hashCode (), equals(),
toString() — not a problem with Searcher (just one
instance)

Department of
Distributed and
Dependable

Remote Searcher (cont.)

— Executable server (see ExampleServer)

— Create instance (and export) of the remote object
— Register with java.rmi.Naming. [re]bind ()

— Extend Main with RMI (see ExampleClient)
— Get reference to a remote Searcher
— java.rmi.Naming.lookup(path)

— Add call to remote Searcher.getDistance() with local
objects NodeImpl in searchBenchmark() method

— How does the server access the neighbors of the passed nodes?

Department of
Distributed and
Dependable

Remote Node Objects

— Extend interface Node with RMI (like Searcher)

— Class inherits from UnicastRemoteObject and implements
Node

— To allow for hashCode (), equals(), toString()
— Copy/paste + edit is enough

— We want that local Nodes from previous task still behaved
locally

Department of
Distributed and
Dependable

Remote Node Objects (cont.)

How to create and return instances for client requests?
Implement NodeFactory with method createNode ()

— Similar to remote Searcher — interface with RMI,
implementing class, create and call Naming.bind () inside the
existing server

— Do not create a standalone server, we want just one for the 4th
variant

Client gets the reference using lookup () and also creates the
remote Node objects together with the local graph

How does the local Searcher access the remote Nodes?

What exactly does the NodeFactory return to the client?

Department of
Distributed and
Dependable

Remote Searcher on Remote Nodes

— Everything is ready, just add this variant to
searchBenchmark () and compare the speed

— How does the Searcher on server access the Node objects on
(the same) server?

Department of
Distributed and
Dependable

Impact Of the Network

— So far, client and server were running on the same machine

— Overhead of RMI communication, but no network latency

— Run on more machines

— Server on the machine next to you, client on yours
— Change paths in [relbind() and lookup()

— Remote machine name instead of localhost
— Modify to use args[0]

— Run rmiregistry and Server in SSH session on the remote
machine

Run the client locally

Beware of CLASSPATH

Department of
Distributed and
Dependable

Passing by Value vs. Passing by Reference

Previous tasks solve “extreme” cases

How about combining both approaches?

Idea: “"batch” transfer of bigger parts of the graph

getTransitiveNeighbors(int distance)

— Returns all neighbors up to some distance

Use the getDistanceTransitive method of the Searcher
interface

— In each step, requests neighbors up to the specified distance

Try different values for the distance parameter

— Compare measured times with previous variants

Department of
Distributed and
Dependable

Implementation Notes

Extend single project, do not create 4 separate ones.

— Interface hides different implementations
— Even Remote interface can be used locally
— Just catch exceptions that would never occur
— E.g. remote graph is just another array Node[]

— Easy to have the same (logically) local and remote one
— Similarly with Searcher

— Measure everything in one run to ease comparison

— Just add measuring and a column to results in
searchBenchmark ()

Department of
Distributed and
Dependable

Building — the make Script

— javac (with Eclipse unnecessary)

— rmic

Deprecated in Java 8

Creates stubs for remote objects

Parameters are class names implementing the remote objects
keep does not remove the generated stub sources

— Sometimes unnecessary

— Client can access the classes (yes in our task)
— Classes inherit from UnicastRemoteObject

Subtle differences for generated stubs and proxies

— equals()

Department of
Distributed and
Dependable

Launching

— Use launcher scripts from the Hello World example

— Important parameters
— Simple Run as. .. /Application in Eclipse is not enough!

— But can be set-up to work as well

Department of
Distributed and
Dependable

Launching (cont.)

— rmiregistry application — run in background
— Port in use? — use different port number (> 1024)

— Edit path in calls to [re]lbind() and lookup()
— localhost becomes localhost:1234

— For simplicity — it has the same CLASSPATH
— We want to avoid setting permissions for codebase etc.
— Starting the server — see run-server script

— Starting the client — see run-client script

Department of
Distributed and
Dependable

Submission

Working implementation
Documentation

— Answer all the questions from the assignment
— Describe measurement results

By e-mail (deadline is on the web)
Make sure it works in the lab downstairs
The submission shall be easy to start

— Use the provided implementation

— No need for Maven or Ant script

— Do not add packages etc.

— Updated versions of the run-server scripts

Department of
Distributed and
Dependable

