
Middleware Labs: CORBA

Petr Tůma Vojtěch Horký Antońın Steinhauser
Vladiḿır Matěna

March 20th, 2019



General Information

– Task description is on the web

– IDL specification, mapping to C++

– http://www.omg.org/spec/CPP/1.3/

– http://www.omg.org/spec/CPP11/1.1/

http://www.omg.org/spec/CPP/1.3/
http://www.omg.org/spec/CPP11/1.1/


CORBA implementations

– omniORB

– Download from the website of the course
– Upack into ~/omniORB

– Or use your distribution-provided omniORB
– Update Makefile as necessary. . .
– Or compile from source
– https://sourceforge.net/projects/omniorb/files/

omniORB/omniORB-4.2.2/

– TAOX11 (mapping to C++11)

– Uses C++11-specific features
– Download from https://swsupport.remedy.nl/

– There are plenty of installers, at least Fedora 17 seems to work

https://sourceforge.net/projects/omniorb/files/omniORB/omniORB-4.2.2/
https://sourceforge.net/projects/omniorb/files/omniORB/omniORB-4.2.2/
https://swsupport.remedy.nl/


Example (C++, omniORB)

– Makefile for client and server

– simple.idl

– simpleSK.cpp, simple.h

– server.cpp, simpleSK.cpp, simple.h → server

– client.cpp, simpleSK.cpp, simple.h → client



Example (C++11, TAOX11)

– build.sh runs MPC and make on the generated Makefiles

– Need for initialization, then call just make
– Extra clean.sh for removal of all generated files

– setenv.sh used to setup environment for taox11 execution

– source ./setenv.sh # use this once before running server
and client

– simple.idl

– simpleC.cpp, simpleS.cpp
– simpleC.h, simpleCP.h, simpleS.h, simpleSP.h

– server.cpp, simpleC.cpp, simpleS.cpp, ... → server

– client.cpp, simpleC.cpp, ... → client



The Task

Implement a client talking with server we provide. . . 1

→ Hello, I am . . .
← Hi, your key is . . .
→ Hello, I am . . . and my key is . . .
← Hi, wait until I am ready, please . . .
→ Tell me your status . . .
← Here it is . . .
→ Part of your status is . . .
→ Bye.

1. . . and also reimplement the server by yourself.



Client Implementation

– IDL is in master.idl

– Reuse files from the example

– In Makefile just update the IDL file

– Client code goes directly into main() in client.cpp

– Pass the input parameters (IOR, key) as command-line
arguments

– Report issues, ask questions when unclear

– Read the slides

– To avoid or solve typical problems ;-)
– Return to them after you have read the instructions



Server Implementation

– Preferably in C++

– Talk to us if you wish to implement it in different language
– Not in Java (half of the tasks is in Java already)

– Mimic the behaviour of our server reasonably

– Use common sense



Submission

– In C++ and omniORB or C++11 and TAOX11

– Server might be in different language (talk to us first)

– By e-mail (deadline is on the web)

– The submission shall be easy to start

– Do not send any generated files (but send the build script)

– Brief README never hurts

– Especially if your server behaves slightly differently



Notes

– Print what the client does to standard output

– cout << "Connected, peer " << peer

– << ", key " << key << endl;

– Use sleep(1) when waiting for idle

– Do not overload the server

– Be careful with memory allocations

– CORBA may deallocate (in)out parameter
– E.g. inout strings pass as copies

– CORBA::string_dup("foo")

– Or use helper class (“smart pointer”)

– Server code can be executed in parallel



Common Problems

– MARSHAL exception when calling connect() (or ping()) for
the first time

– Is IOR string really correct?

– Class (e.g. String_out) cannot be instantiated because it
has private constructor

– Deriving correct mapping of IDL solely from function
signatures in master.h might be misleading!

– Parameter types are for omniORB implementation or for
server, not for client

– Correct client types are automatically type-casted



Notes for TAOX11

Evaluation license

– Must be placed to taox11 root (unpacked)

– Limits the execution time of the application

– Must be on the path of the application running

– In the working directory
– In the RI_LL_LICENSE environment variable

Building and compiling

– Use the MPC workspace creator mwc.pl, don’t try to write
the Makefile manually

– Or use the BRIX11 toolset


