Middleware Labs: JMS

Petr Tima Vojtéch Horky Antonin Steinhauser
Vladimir Maténa

April 03, 2019

Department of
Distributed and
Dependable

General information

— Task description is on the web

JMS implementation: ActiveMQ

— Download the latest version from Apache (older version is
available on the website of the course)

— Unpack into “/ActiveMQ

Department of
Distributed and
Dependable

Example

— ActiveMQ infrastructure execution
— Run in background

— § bash activemq start
— $ bash activemg stop

— Or run in foreground
— $ bash activemq console
— Producer/consumer example

— ExampleConsumer consumes messages from two queues
— ExampleProducer sends ‘ping’ message to those queues

— Running the example

— make script for compilation
— consumer and producer scripts for launching the applications

Department of
Distributed and
Dependable

Task: a simple trading system

Implement a client of a trading system

Clients must communicate with each other and with the bank
we provide

Clients publish their lists of goods and buy goods from each
other on user request

The payments go through the bank

Department of
Distributed and
Dependable

Implementation

Reuse files from the example and Input-Files/
Report issues, ask questions when unclear
Read the slides

— To avoid or solve typical problems ;-)
— Return to them after you have read the instructions

Code in any editor, run from command-line

Department of
Distributed and
Dependable

Submission

By e-mail (deadline is on the web)
Documentation
— Design and reasoning about the communication protocol used
The submission shall be easy to start
Make sure it works in the lab

Do not send any generated files (but send the build script)

Department of
Distributed and
Dependable

Running

— Use Java 1.8

— java -version
— java-config -s oracle-jdk-bin-1.8

— ActiveMQ (the broker) must be running prior to the execution
of the clients

Department of
Distributed and
Dependable

- You

Implementation notes

need two different Session instances

The first for asynchronous message handling, the second for
synchronous (user-triggered) messages and waiting for their
replies

Single session cannot be used for both synchronous and
asynchronous waiting

MessageProducer from one Session should not be used in a
different session

We need dedicated MessageProducer for each Session

— Do not forget synchronization of accesses to shared data

Department of
Distributed and
Dependable

Common problems

— Use equals() instead of == for String comparison

Exceptions at client start-up

— Probably a message in broker queue
— Solution

1. Stop the bank, client and the broker
2. Remove directory data and activemq-data
3. Restart the broker, bank

Department of
Distributed and
Dependable

Provided parts of the solution

— Bank. java: bank implementation
— Complete, nothing needs to be added (can be studied)
— Client. java: skeleton of the client

— Many parts already prepared

— JMS initialization, data structures, interaction with the user,
the whole communication with the Bank

— All that is left to do is the communication between clients

— Sending and receiving goods offers

— Buying goods (on user’s request)

Selling goods (asynchronous reaction on other clients’
requests)

The place marked as TODO in the code

Department of
Distributed and
Dependable

Goods offers

— Initialize a suitable channel for transferring offers and create a
receiver of its messages

— Step 1 in the connect () method

— Implement sending of offers

— The publishGoodsList () method

— Implement receiving of offers

— The processOffer() method

Department of
Distributed and
Dependable

Buying goods

Initialize suitable channel for receiving sale requests and create
a receiver of its messages

— Step 2 in the connect () method

Choose suitable message types for communication between
clients

— MapMessage? ObjectMessage?
Sending messages requesting a sale

— Step 1 in the buy () method
Receiving messages requesting a sale

— Step 1 in the processSale() method

Reserve the requested item

— Step 2 in the processSale() method Dpe'gzn;nzntt)‘;Ds‘

Dependable

Buying goods (cont.)

Accept or refuse the sale
— Step 3 in the processSale() method
Receive the reply of the sale request message
— Step 2 in the buy () method
Money transfer request for the Bank
— Step 3 in the buy () method (already implemented)

After receiving the transaction notification from the Bank
(implemented), send a finished sale confirmation

— Step 3 in the processBankReport () method

Receive the confirmation, notify the user
— Step 4 in the buy () method

Department of

Distributed and
Dependable

D3

