
Middleware Labs: JMS

Petr Tůma Vojtěch Horký Antońın Steinhauser
Vladiḿır Matěna

April 03, 2019



General information

– Task description is on the web

JMS implementation: ActiveMQ

– Download the latest version from Apache (older version is
available on the website of the course)

– Unpack into ~/ActiveMQ



Example

– ActiveMQ infrastructure execution

– Run in background

– $ bash activemq start

– $ bash activemq stop

– Or run in foreground

– $ bash activemq console

– Producer/consumer example

– ExampleConsumer consumes messages from two queues
– ExampleProducer sends ‘ping’ message to those queues

– Running the example

– make script for compilation
– consumer and producer scripts for launching the applications



Task: a simple trading system

– Implement a client of a trading system

– Clients must communicate with each other and with the bank
we provide

– Clients publish their lists of goods and buy goods from each
other on user request

– The payments go through the bank



Implementation

– Reuse files from the example and Input-Files/

– Report issues, ask questions when unclear

– Read the slides

– To avoid or solve typical problems ;-)
– Return to them after you have read the instructions

– Code in any editor, run from command-line



Submission

– By e-mail (deadline is on the web)

– Documentation

– Design and reasoning about the communication protocol used

– The submission shall be easy to start

– Make sure it works in the lab

– Do not send any generated files (but send the build script)



Running

– Use Java 1.8

– java -version

– java-config -s oracle-jdk-bin-1.8

– ActiveMQ (the broker) must be running prior to the execution
of the clients



Implementation notes

– You need two different Session instances

– The first for asynchronous message handling, the second for
synchronous (user-triggered) messages and waiting for their
replies

– Single session cannot be used for both synchronous and
asynchronous waiting

– MessageProducer from one Session should not be used in a
different session

– We need dedicated MessageProducer for each Session

– Do not forget synchronization of accesses to shared data



Common problems

– Use equals() instead of == for String comparison

Exceptions at client start-up

– Probably a message in broker queue

– Solution

1. Stop the bank, client and the broker
2. Remove directory data and activemq-data

3. Restart the broker, bank



Provided parts of the solution

– Bank.java: bank implementation

– Complete, nothing needs to be added (can be studied)

– Client.java: skeleton of the client

– Many parts already prepared

– JMS initialization, data structures, interaction with the user,
the whole communication with the Bank

– All that is left to do is the communication between clients

– Sending and receiving goods offers
– Buying goods (on user’s request)
– Selling goods (asynchronous reaction on other clients’

requests)
– The place marked as TODO in the code



Goods offers

– Initialize a suitable channel for transferring offers and create a
receiver of its messages

– Step 1 in the connect() method

– Implement sending of offers

– The publishGoodsList() method

– Implement receiving of offers

– The processOffer() method



Buying goods

– Initialize suitable channel for receiving sale requests and create
a receiver of its messages

– Step 2 in the connect() method

– Choose suitable message types for communication between
clients

– MapMessage? ObjectMessage?

– Sending messages requesting a sale

– Step 1 in the buy() method

– Receiving messages requesting a sale

– Step 1 in the processSale() method

– Reserve the requested item

– Step 2 in the processSale() method



Buying goods (cont.)

– Accept or refuse the sale

– Step 3 in the processSale() method

– Receive the reply of the sale request message

– Step 2 in the buy() method

– Money transfer request for the Bank

– Step 3 in the buy() method (already implemented)

– After receiving the transaction notification from the Bank
(implemented), send a finished sale confirmation

– Step 3 in the processBankReport() method

– Receive the confirmation, notify the user

– Step 4 in the buy() method


