
Middleware Labs: OpenEJB

Petr Tůma Vojtěch Horký Antońın Steinhauser
Vladiḿır Matěna

May 15, 2018

Enterprise JavaBeans 3.0

– http://d3s.mff.cuni.cz/teaching/middleware/files/

OpenEJB-4.7.4.tar.gz

– Uncompress into ~/OpenEJB

– http://d3s.mff.cuni.cz/teaching/middleware/files/

as5.zip

– Example/ - EJB demo, including README and few helper
scripts

– Input-Files/ - local implementation of the task

http://d3s.mff.cuni.cz/teaching/middleware/files/OpenEJB-4.7.4.tar.gz
http://d3s.mff.cuni.cz/teaching/middleware/files/OpenEJB-4.7.4.tar.gz
http://d3s.mff.cuni.cz/teaching/middleware/files/as5.zip
http://d3s.mff.cuni.cz/teaching/middleware/files/as5.zip

Notes

– EJB server must be running(run-server)

– Different port when already used

– Server: ~/OpenEJB/conf/ejbd.properties
port = XYZ (XYZ>1024)

– Similarly admin.properties (for stop-server)
– Client:

props.put(Context.PROVIDER_URL, "ejbd://127.0.0.1:XYZ");

– Server part deployed with run-deploy

– Needed after each re-compilation!
– Persistent data stored in ~/OpenEJB/data

– In case of rather bigger changes it is safer to stop-server

and delete the (hsqldb) data

Task - compute distances in the graph

public interface Searcher {
 public int addNode();
 public void connectNodes
 (int nFrom, int nTo);
 public int getDistance
 (int nFrom, int nTo);
}

public Node {
 private int id;
 public Collection<Node> getNeighbors();
 public void addNeighbor(Node neighbor);
}

Node

Node

Node

Node

Node

Node

Figure: Graph scheme

1. Local implementation

– Class Node

– Interface Searcher and class SearcherImpl

– Launchable class Main (java Main)

– Measure the speed on the random graph

2. Searcher as a stateless session bean

– Searcher as a remote business interface

– Use appropriate annotation

– Annotation of class SearcherImpl

– Compilation and deployment

– See scripts in Example

– Output also contains JNDI name of the bean -
Jndi(name=<ClassName>Remote)

– Client - class Main

– JNDI context creation – see ExampleClient

– Searcher instance retrieved by JNDI lookup

3. Node as an entity bean

– See Movie and Director in Example

– Annotation of class Node

– Getter/setter for id with appropriate annotation

– Neighbour nodes as relations among entities

– Getter/setter with appropriate annotation of the relation

4. Persistence of Node objects

– Update the class SearcherImpl

– See ExampleEntityBeans

– Replace hashmap nodeMap with EJB equivalents

– Annotated EntityManager

– unitName - corresponds to persistence.xml
– Method persist() for persistence of created Node

– Method find() for finding Node by id

– The deployed JAR must contain file
META-INF/persistence.xml - see Example

– Set persistence-unit name and class correctly

5. Verify persistence

– Stop the server after creating the graph, start it before
searching through it

– Where to get the node id for the second launch?

– Try not to assume anything about automatic id assignment to
Node

– Remember which id was returned during creation
– Optimal: add method to Searcher that selects a random id

from existing nodes

6. Multiple graphs

– Clients with different client id operate on separate graphs

– Change the definition of SearcherImpl to keep track of the
client id

– Do not pass the client id as an argument to every method

Implementation

– Reuse available code

– Algorithm implementation of the local variant
– Scripts and code from the example

– Do not add packages etc.

– Use Eclipse, NetBeans etc., if you like

– Report issues, ask questions when unclear

– Mailing list. . .

Submission

– Part of the solution is also documentation of the chosen
approach

– See point 4 in the task description, where you can choose
among different approaches

– By e-mail (deadline is on the web)

– Make sure it works in the lab downstairs

– The submission shall be easy to start

