First assignment Java RMI

Send the finished task by e-mail to your teaching assistant. Deadlines for the submission are on the web
page of the course: http://d3s.mff.cuni.cz/teaching/middleware/.

The purpose of the task is to get basic understanding of distributed objects and an idea how accessing
them and working with them can affect performance of the application.

Prerequisites

The task is based on computing the distance between two nodes in a graph, simulating work with dynamic
data structures. No other special knowledge is required.

Java RMI is the technology used for the remote procedure invocation. For implementing the assignment,
understanding of the following is required:

Definition of a remotely accessible interface
(interface java.rmi.Remote, exception java.rmi.RemoteException).

— Implementation of a remotely accessible object
(class java.rmi.server.UnicastRemoteObject, inheriting from this class, method exportObject)

Connecting the client and server using the RMI registry
(class java.rmi.Naming, rmiregistry application)

— Compilation
(rmic application before Java 8)

A simple example of a remote function call for Java RMI is available.

Assignment details

http://d3s.mff.cuni.cz/teaching/middleware/files/asl.zip

The core of the assignment is a simple distance measuring between two nodes in a graph. The node
objects implement the interface Node:
public interface Node {
Set<Node> getNeighbors ();
void addNeighbor (Node neighbor);
}
The addNeighbor (Node) method adds the argument node object to a set of neighbors of the receiver
node object. This method is used when generating a graph. The getNeighbors() method returns a set
of all neighbors of an object and is used for distance computation. The actual distance computation is
done through a Searcher interface:
public interface Searcher {
public static final int DISTANCE_INFINITE = -1;
public int getDistance(Node from, Node to);

Your tasks are:

1. Explore the provided implementation of the task that works locally only.

Measure the speed of execution on several types of randomly generated graphs, both sparse and
dense ones.

2. Create a server that would provide a remotely accessible object with the Searcher interface. Update
the provided implementation to allow search through the remote interface along the local one. The
server object with the Searcher interface would accept local objects with the Node interface.


http://d3s.mff.cuni.cz/teaching/middleware/
http://d3s.mff.cuni.cz/teaching/middleware/files/as1.zip

Measure and compare the speed of the implemented variants. How does the server Searcher access
the local Node objects?

. Update the server to provide remotely accessible objects with the Node interface that would be cre-
ated upon client request. Update the provided implementation to allow computation of distance in
the graph using a local Searcher working with server Node objects along the existing functionality.

Measure and compare the speed again. Do not forget that it is necessary to measure the same
graphs (local and remote ones) to get a relevant comparison. How does the local Searcher access
the server Node objects?

. Add another variant: compute the distance using the server Searcher interface to which you pass
(from the client) the graph as server Node objects.

Measure and compare the speed again. How does the server Searcher access the server Node
objects?

. Compare the speed of all variants when both client and server are running on the same machine
vs. a situation when client and server are on different physical computers connected by a network.

. Results of the previous measurements help to distinguish when it is faster to pass dynamic data
structures by value and when it is faster to pass them by reference. The assignment demonstrates
this on extreme all-or-nothing cases when either everything is passed by value or everything is
passed by reference. But often a combination of both is the right choice.

In the provided implementation of the Searcher interface, there is another method for computing
the distance, getTransitiveDistance(int,Node,Node), that in each step retrieves not only direct
neighbors of a node but a whole set of neighbors that are at most as far from the node as specified
by the first argument.

This algorithm uses the getTransitiveNeighbors(int) method of the Node interface that returns
all neighbors that are close enough — i.e. that are accessible by at most n edges where n is an
argument to that method.

Use this algorithm and find out for which values of the argument the measured times are comparable
to those obtained from the settings described in 2 and 3. Use randomly generated sparse and dense
graphs. Test in a higher latency environment, e.g. between networks in the campus and in the local
lab.
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