
Second assignment CORBA

Send the finished task by e-mail to your teaching assistant. Deadlines for the submission are on the web
page of the course: http://d3s.mff.cuni.cz/teaching/middleware/.

The goal of the assignment is to obtain basic experience with mapping of CORBA IDL data types
and interfaces. The interface describes a simple state server, which implements several trivial methods.
Rather than implementing a specific algorithm, the client is supposed to call the interface methods in a
given order, provide correct values to input parameters and display values of output parameters.

Prerequisites

The chosen CORBA middleware implementation is omniORB latest version (precompiled binaries avail-
able for older versions) for the C++ language, or TAOX11 for C++11 and later. The following knowledge
is needed for the implementation:

– The syntax and semantics of the CORBA IDL language.

– The mapping of CORBA IDL to the C++ language.

– Standard functionality provided by the CORBA middleware and POA methods.

– Using CORBA middleware to implement a client side of a system in C++.

– Using CORBA middleware to implement a server side of a system in C++.

An example CORBA client and server in C++ is provided.

Assignment details

http://d3s.mff.cuni.cz/teaching/middleware/files/as2.zip

The IOR of a running CORBA server will be provided on the web page. The server implements the
interface from the provided master.idl file.

Your tasks are:

1. The provided IOR references a remote object implementing the server_i interface with the
connect(inout string <8> peer , inout long long key)

method. For a simple connection test it also implements the
short ping(in shortval)

method, which returns the input value. Choose an unique peer string such as your name or SIS
login (preferred) that fits in the character limit.

For a successful call of the connect() method, the right value of key is needed. Using a wrong key
results in a connection_e exception, whose attribute cause contains an error message including
the right value of key. The value does not have to be parsed in the code, it is sufficient to print it
and exit, then run the client again with the code as a command-line argument. It is fixed for your
given peer name.

A successful call returns an object of the instance_i interface and modifies the values of the inout
parameters peer and key, which will be needed later.

2. Before subsequent calls to the instance object, its attributes idle and ready need to have a value
of true. The ready attribute can be set directly, the idle attribute is read-only and you have to
poll it in a cycle until it has the true value. You should suspend the process between the iterations
of the cycle (e.g. with a sleep(1) call).
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Not fulfilling these conditions will cause the calls to other methods of the instance to throw a
protocol_e exception. The conditions have to be fulfilled just once, the attributes will no longer
change and need not be checked anymore.

3. Now call the instance method
get_status(in string s_key , inout count_t cnt ,

out octet_sequence_t status)

The s_key parameter should be set to the string that the connect() method returned in the
peer parameter as part of the first objective. The union parameter cnt should be initialized as a
long long type with the value that the connect() method returned in the key parameter as part
of the first objective. Wrong parameter values will result in a protocol_e exception.

The method will return a sequence of octets in the out parameter status and set the cnt parameter
randomly as either a short or long, with a value that will be used to index the octet sequence.

4. Call the instance method
request(in request_t req)

where the req structure should have the index field set to the value of cnt and the data field
should contain the value of the octet with index cnt in the sequence. Wrong parameter values will
result in a protocol_e exception.

Print out the return value of the request() method.

5. Call the instance method
disconnect ()

before exiting from the client.

6. Based on the interface description from the master.idl file, implement the server side of the
interface in addition to the client side. Use the basic assignment description to implement the
behavior of the server side. In case of ambiguous description, choose an appropriate alternative
(which does not violate the interface, common practices etc.) and concisely document your decision.
Do not forget that with the default POA policy, methods of server_i are executed in multiple
threads and thus proper synchronization is required.

You should use the C++ language and omniORB/taox11 to implement the server. Using different
implementation and/or language is possible only after previous agreement. The client should stay
in C++ to demonstrate interoperability.

Last updated: March 20, 2018

http://d3s.mff.cuni.cz/teaching/middleware/

2

http://d3s.mff.cuni.cz/teaching/middleware/

	Prerequisites
	Assignment details
	Your tasks are:


