
Fourth assignment DHT (Chord)

Send the finished task by e-mail to your teaching assistant. Deadlines for the submission are on the web
page of the course: http://d3s.mff.cuni.cz/teaching/middleware/.

The assignment describes an extension to a simple chat application, where users send private messages,
with the possibility to join so-called channels, which distribute the messages to all participants that join
the channel (similarly to e.g. IRC). Understanding the assignment requires no special knowledge.

Prerequisites

The chosen technology for sending messages is a peer-to-peer overlay providing Key-Based Routing. The
particular implementation is python-chord (python implementation of the Chord overlay). The following
knowledge is needed for the implementation:

– The core idea of key-based routing: addressing messages to peers obtained by hashing; working with
keys in the Chord implementation (functions: Address.__hash__(), Node.id(), hash_string(),
Local.is_ours()).

– Chord overlay initialization, joining the overlay network, bootstrap from a known peer (functions:
Local.__init__()).

– The methods for sending messages: message format (string message type without whitespace, string
payload without newlines), registration of asynchronous upcall functions for receiving messages
(Local.register_command()), and processing of the predecessor change event (Local.set_notify_handler()),
message sending (Remote.user_command(), Local.user_command()).

– The methods for finding other network nodes (Local.find_successor(), Local.successor(),
Local.predecessor())

An example simple chat implementation will be provided; you may implement the assignment by extend-
ing this example.

Assignment details

http://d3s.mff.cuni.cz/teaching/middleware/files/as4.zip

Implement a simple application for chatting over network without a central server using the Chord peer-
to-peer overlay Python implementation.

Your tasks are:

1. When starting the application, the user will provide a nickname to identify himself in the chat and
his node’s address to identify his node. (The node’s address=IP+port is used to identify a node
in the Chord network.) The user may also specify an address and port of a machine to bootstrap
the overlay from. After its startup, the application will initialize Chord using given node’s address
(and eventually the bootstrap information) and waits for the user’s input.

2. The user can send a private message to a different user in the same network using a command
(msg <other node’s id> <message>).
The message will be addressed to the proper client given by the id. The receiving client will verify
if the id equals its own key, and eventually show the received message to the user.

Note. Items 1 and 2 are already implemented in the provided example.

Note. Every node outputs its id on startup so that you know it.

1

http://d3s.mff.cuni.cz/teaching/middleware/
http://d3s.mff.cuni.cz/teaching/middleware/files/as4.zip


3. The user can join a chosen channel using a command (join <channel>). The application will send
a join request by hashing the channel name – Chord will deliver the request to the client whose
own key is the closest to the hashed channel key. This client becomes responsible for the channel –
it maintains a list of joined participants and delivers channel messages to them (see item 4). For
this purpose, the join request should contain an appropriate identification of the joining client.

4. The user can leave a channel using a command (leave <channel>). Subsequent channel messages
will not be resent to him.

5. The user can send a message to a channel using a command (send <channel> <message>). The
channel is addressed the same way as in the previous item. The channel maintainer will resend
this message to all clients in the channel. The client that sends the message does not have to join
the channel – if it does, the message is sent back to the sender as well. (Obviously, the channel
maintainer does not have to join the channel it maintains.)

Note. The first part of assignment assumes, that no clients join or leave the overlay network after
all the channels are established. However, when a new client joins the network, subsequent messages
addressed to some channel might be delivered to him instead of the current maintainer. Similarly,
when a client maintaining a channel leaves the network, the messages will be delivered to other
clients, who may not know the lists of channel participants. The goal of the subsequent tasks is to
at least partially alleviate these shortcomings.

6. When a new client joins the overlay network, his successor should (in the upcall registered by
Local.set_notify_handler()) check all the channels he has whether they still belong to him
(Local.is_ours()). All the channels that do not belong to him anymore, it should migrate to
his new predecessor. The old maintainer will perform the migration by sending the list of all
participants to the new maintainer. If any clients join the channel via the new maintainer before
the migration is completed, the migration will join the lists of old and new participants to a union.
Manipulation with the channels and the migration process shall be thoroughly documented, at least
by text messages.

7. The user can terminate the application using a command (exit). The application should first leave
all channels that the user has joined (for this, it has to remember them locally). Then it migrates
all channels it maintains to its successor (its address can be obtained by the Local.successor()

function) and exits.

8. The msg command changes to msg <peer’s name> <message>. For this to happen, every node
after its startup has to send a “set name map” message (by hashing his name) with his address.
The receiver of this message will remember mapping from the user’s name to it’s node. For this
purpose, the “set name map” request message should contain an appropriate identification of the
sending client. When the msg command is invoked, then the client has to convert the name to an
identification of a client by sending a “get name map” message to the appropriate node. Whent
it has the node’s identification, it can send him the message. In order for this mechanism to work
when nodes are joining and leaving, the nodes keeping these mapping must migrate them when
they are leaving or they get a new predecessor the same way as they migrate maintained channels.
On exit, the node shall delete the mapping from its name to its id in the network.

Consider situations, where even this solution may fail. How could such cases be remedied?

Last updated: April 17, 2018

http://d3s.mff.cuni.cz/teaching/middleware/

2

http://d3s.mff.cuni.cz/teaching/middleware/

	Prerequisites
	Assignment details
	Your tasks are:


